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Abstract Standard Wilkinson-type error estimates of floating-point algorithms in-
volve a factor γk := ku/(1− ku) for u denoting the relative rounding error unit of
a floating-point number system. Recently, it was shown that, for many standard al-
gorithms such as matrix multiplication, LU- or Cholesky decomposition, γk can be
replaced by ku, and the restriction on k can be removed. However, the arguments
make heavy use of specific properties of both the underlying set of floating-point
numbers and the corresponding arithmetic.

In this paper, we derive error estimates for the summation of real numbers where
each sum is afflicted with some perturbation. Recent results on floating-point sum-
mation follow as a corollary, in particular error estimates for rounding to nearest and
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Our new estimates are sharp and decover the necessary properties of floating-
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1 Introduction

A floating-point number system in accordance to the IEEE 754 standard [2,3] with
basis β , mantissa length p, and exponent range [emin, emax] can be defined via

F := {m ·β e : m ∈ β
−pZ, |m|< 1,emin ≤ e≤ emax}. (1.1)

The error analysis regarding such a system is typically based on the two standard
models for floating-point arithmetic [1, Eq. (2.4) and (2.5)]. For some operation
+̃ : F×F→ F approximating a real sum according to these models, we have

a,b ∈ F : a+̃b = (a+b)(1+ ε1) =
a+b
1+ ε2

for some |εi| ≤ u, (1.2)

where u is a constant associated to F. It is typically referred to as the relative rounding
error unit.1 If a+̃b approximates a+ b by the nearest number in F and a+ b lies in
the range of normalized numbers ±[β emin−1, (1−β−p)β emax ], then (1.2) is satisfied
for u := 1

2 β 1−p.
Let s∈F denote the result of a summation of x1, . . . ,xn ∈F, where each individual

sum uses +̃. An immediate consequence of (1.2) is∣∣s− n

∑
i=1

xi
∣∣≤ ((1+u)n−1−1

) n

∑
i=1
|xi|. (1.3)

In order to avoid the awkward factor in (1.3), usually the standard Wilkinson-type
estimate is used: ∣∣s− n

∑
i=1

xi
∣∣≤ γn−1

n

∑
i=1
|xi|, (1.4)

where γk := ku/(1− ku). The estimate (1.4) is true for any order of evaluation pro-
vided that (n−1)u < 1.

In a sequence of papers starting with [8], it was shown that for floating-point
systems following the IEEE 754 standard the constant γn−1 in (1.4) can be replaced
by (n−1)u without restriction on n and for any order of evaluation [4], i.e.,∣∣s− n

∑
i=1

xi
∣∣≤ (n−1)u

n

∑
i=1
|xi|. (1.5)

In the sequel, this principle - the replacement of γk by ku without restriction on k -
was extended to dot products, LU-decomposition, Cholesky decomposition, forward
and backward substitution, and more [9]. However, all proofs make heavy use of the
particular properties of an IEEE 754 like floating-point arithmetic.

In the present paper, we consider the summation of real numbers, where each
individual sum is somehow perturbed; abandoning the concept of a fixed floating-
point grid as in (1.1). We prove an estimate equivalent to (1.5) for an arbitrary subset
F of R and operation +̃ with the only assumption that

a,b ∈ F : |(a+̃b)− (a+b)| ≤min{|a|, |b|}. (1.6)

1 Note that the relative error ε1 with respect to the true result is, in fact, bounded by u
1+u , see (3.3).
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In particular, any rounding to nearest implies (1.6), see (3.2). In fact, our result is
more general, not requiring any standard model, no relative rounding error unit nor
any assumption on F. Moreover, weaker assumptions than (1.6) are sufficient. The
details are given in the next section.

Besides the new estimates, one purpose of this paper is to identify the proper-
ties particularly necessary to allow for (1.5). It will turn out that almost none of the
previous assumptions on the floating-point system are actually necessary.

We also prove a similar result for an even more general approximation concept
with no consideration of (1.6). The corresponding estimate for other rounding modes,
in particular for directed rounding, in an IEEE 754 compliant arithmetic follows as a
trivial corollary.

The paper is organized as follows. In Section 2 the new estimates for the summa-
tion of real numbers are stated. For didactic purposes, first, the surprisingly simple
proof for recursive summation is presented. This is followed by the same result for
arbitrary order of summation, which implies the estimate (1.5) for rounding to nearest
as a corollary. The third new result, the proof of which is again surprisingly simple,
covers a similar result for floating-point arithmetic with faithful rounding as a corol-
lary. In particular, this includes a floating-point arithmetic with directed rounding.

The corollaries for floating-point schemes are presented in Section 3, including a
result similar to (1.5) for dot products.

2 Error estimates for perturbed sums of real numbers

The first result on summation is formulated so that the corresponding result for
floating-point summation in rounding to nearest follows as a corollary. As mentioned,
we begin by presenting the proof for recursive summation, followed by the general
proof for arbitrary summation order.

Lemma 2.1 Let x,ε ∈Rn be given. Define vectors δ ,s ∈Rn such that s1 = x1+δ1 =
x1(1+ ε1) and

sk = xk + sk−1 +δk = (xk + sk−1)(1+ εk)

for 2≤ k ≤ n. Furthermore, to every index k = 1, . . . ,n, define

ξk :=
|δk|

∑
k
i=1 |xi|+∑

k−1
i=1 |δi|

with the convention 0
0 := 0. Suppose

|δk| ≤
(
1+

k

∑
i=1

ξi
)
|xk| for 2≤ k ≤ n. (2.1)

Then ∆n := sn−∑
n
i=1 xi satisfies

|∆n| ≤
n

∑
i=1
|δi| ≤

n

∑
i=1

ξi

n

∑
i=1
|xi| ≤

n

∑
i=1
|εi|

n

∑
i=1
|xi|. (2.2)

The estimate is sharp in the sense that for arbitrary nonnegative x1,ε1...n there exist
x2...n such that (2.1) is satisfied and there are equalities in (2.2).
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Remark 2.1 Inequality (2.1) is the only assumption in Lemma 2.1 to be satisfied.
Not even an upper bound for the relative perturbations, such as εi ≤ 1, is assumed.
Evidently, the validity of (2.1) is implied by property (1.6).

Remark 2.2 Moreover, there is no assumption whatsoever on the size of ε1 or δ1. One
choice is ε1 = δ1 = 0. In that case the constant in (2.2) is the sum of the n−1 relative
errors ε2...n, corresponding to the familiar estimates (1.4) or (1.5).

Remark 2.3 Since the input data xi are real numbers, ε1 = δ1 = 0 might be thought
of as the generic choice. However, when evaluating a scalar product using FMA,
every product can be considered as a real number, and the very first product would be
perturbed as well. In any case, allowing for general ε1 and δ1 seems to ease notation.

Remark 2.4 The estimate (2.2) not only regards the local relative errors εi of si with
respect to xi + si−1 but gives a tighter bound in correspondence to the relative errors
ξi, which are defined with respect to the maximally possible sum of absolute values
of the xi and absolute values of the perturbations δi in the i-th step.

Proof of Lemma 2.1 The proof is by induction, whereby the result for n = 1 is evi-
dent. By definition, we have ∆n = ∑

n
i=1 δi and therefore

|∆n|=
∣∣ n

∑
i=1

δi
∣∣≤ n

∑
i=1
|δi|= |δn|+

n−1

∑
i=1
|δi|. (2.3)

We distinguish two cases. First, assume |xn|< ξn ∑
n−1
i=1 |xi|. The assumption (2.1) and

the induction hypothesis for (2.2) imply

n

∑
i=1
|δi| ≤

(
1+

n

∑
i=1

ξi
)
|xn|+

n−1

∑
i=1

ξi

n−1

∑
i=1
|xi|

< ξn

n−1

∑
i=1
|xi|+

n

∑
i=1

ξi |xn|+
n−1

∑
i=1

ξi

n−1

∑
i=1
|xi|

=
n

∑
i=1

ξi

n

∑
i=1
|xi|.

Secondly, suppose ξn ∑
n−1
i=1 |xi| ≤ |xn|. Then the definition of ξn and the induction

hypothesis give

n

∑
i=1
|δi|= ξn

n

∑
i=1
|xi|+ξn

n−1

∑
i=1
|δi|+

n−1

∑
i=1
|δi|

≤ ξn

n

∑
i=1
|xi|+ξn

n−1

∑
i=1

ξi

n−1

∑
i=1
|xi|+

n−1

∑
i=1

ξi

n−1

∑
i=1
|xi|

≤ ξn

n

∑
i=1
|xi|+

n−1

∑
i=1

ξi |xn|+
n−1

∑
i=1

ξi

n−1

∑
i=1
|xi|

=
n

∑
i=1

ξi

n

∑
i=1
|xi|.



Error estimates for the summation of real numbers 5

Finally, using sk−1 = ∑
k−1
i=1 (xi +δi),

|εk|=
|δk|

|xk + sk−1|
≥ |δk|
|xk|+∑

k−1
i=1 (|xi|+ |δi|)

= ξk (2.4)

proves (2.2).
In order to show that this estimate is sharp, let arbitrary nonnegative x1,ε1...n be

given, and define xk := εk ∑
k−1
i=1 xi for k = 2, . . . ,n. The nonnegativity of x1,...,n, δ1 =

ε1x1 ≥ 0, and δk = εk(xk + sk−1)≥ 0 implies sk = ∑
k
i=1(xi+δi) = ∑

k
i=1 |xi|+∑

k
i=1 |δi|

and therefore εk = ξk for all k = 1, . . . ,n. We proceed by induction to prove that the
assumption (2.1) of Lemma 2.1 is satisfied and that there are equalities in (2.2). For
n = 1, we have s1− x1 = δ1 = ε1x1. Suppose that, up to k ≤ n− 1, (2.2) is satisfied
with equalities, i.e.

k

∑
i=1

δi =
k

∑
i=1

ξi

k

∑
i=1

xi =
k

∑
i=1

εi

k

∑
i=1

xi.

Then, by the definition xk = εk ∑
k−1
i=1 xi, the nonnegativity of all quantities, and the

induction hypothesis, we have

δk = εk
(
xk +

k−1

∑
i=1

xi +
k−1

∑
i=1

δi
)

= εkxk + εk

k−1

∑
i=1

xi + εk

k−1

∑
i=1

εi

k−1

∑
i=1

xi

= εkxk + xk +
k−1

∑
i=1

εi xk

=
(
1+

k

∑
i=1

εi
)
xk =

(
1+

k

∑
i=1

ξi
)
xk

for k = 2, . . . ,n. Hence, (2.1) is satisfied with equality. Finally, using δn = εn(xn +
sn−1) = εn(∑

n
i=1 xi +∑

n−1
i=1 δi),

sn−
n

∑
i=1

xi = δn +
n−1

∑
i=1

δi

= εn

n

∑
i=1

xi + εn

n−1

∑
i=1

δi +
n−1

∑
i=1

δi

= εn

n

∑
i=1

xi + εn

n−1

∑
i=1

εi

n−1

∑
i=1

xi +
n−1

∑
i=1

εi

n−1

∑
i=1

xi

= εn

n

∑
i=1

xi +
n−1

∑
i=1

εi xn +
n−1

∑
i=1

εi

n−1

∑
i=1

xi

=
n

∑
i=1

εi

n

∑
i=1

xi,

so that also (2.2) holds true with equalities. ut
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The following result generalizes Lemma 2.1 to summation in arbitrary order. The
proof requires slightly more effort.

Theorem 2.1 Let a binary tree T with root r be given. For a node j of T , denote the
set of inner nodes of the subtree with root j by N j, and the set of its leaves by L j. To
each leaf i ∈ Lr associate a real number xi, and let to each inner node j ∈ Nr a real
number ε j be associated. Define

s j :=

{
x j if j ∈ Lr

(sleft( j)+ sright( j))(1+ ε j) if j ∈ Nr,

where left( j) and right( j) denote the left and right child of an inner node j, respec-
tively. Furthermore, define for all inner nodes j

δ j := s j− sleft( j)− sright( j)

as well as, with the convention 0
0 := 0,

ξ j :=
|δ j|

∑i∈L j |si|+∑i∈N j\{ j} |δi|
.

Suppose
|δ j| ≤ min

k∈{left( j),right( j)}

{
|sk|+ ∑

i∈N j\Nk

ξi ∑
i∈Lk

|si|
}

(2.5)

is true for all inner nodes j. Then ∆r := sr−∑i∈Lr si satisfies

|∆r| ≤ ∑
i∈Nr

|δi| ≤ ∑
i∈Nr

ξi ∑
i∈Lr

|si| ≤ ∑
i∈Nr

|εi|∑
i∈Lr

|si|. (2.6)

The estimate is sharp in the sense that for arbitrary ε j ∈ [0, 1] there exists a tree T
such that (2.5) is satisfied and there are equalities in (2.6).

Remark 2.5 Inequality (2.5) is the only assumption in Theorem 2.1 to be satisfied.

Remark 2.6 By (2.6), Theorem 2.1 gives an error estimate for the summation of n
real numbers xi in arbitrary order. Since ∑i∈Lr si = ∑i∈Lr xi this estimate is equivalent
to (2.2) for recursive summation in Lemma 2.1 with ε1 = 0.

Remark 2.7 In correspondance to Lemma 2.1, the estimate (2.6) not only regards the
local relative errors εi but gives a tighter bound in using the relative errors ξi with
respect to the maximally possible sum of absolute values of the leaves and absolute
values of the perturbations δi in the respective subtree.

Proof of Theorem 2.1 We proceed by induction. For n= 1 leaf, there is no inner node
and therefore sr−∑i∈Lr si = 0. Let a tree with n nodes and root r be given, and suppose
(2.6) is true for trees with up to n− 1 leaves. Denote the children of the root r by p
and q. Furthermore, denote

et := ∑
i∈Nt

ξi for t ∈ {p,q,r},
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where Nt is empty if t is a leave. Apparently, er = ep +eq +ξr. After possible renam-
ing, we henceforth assume without loss of generality that ∑i∈Lq |si| ≤ ∑i∈Lp |si|. The
left inequality in (2.6) is evident by

sr− ∑
i∈Lr

si = ∑
i∈Nr

δi, (2.7)

and the right inequality follows by the same argument (2.4) as in the proof of Lemma
2.1. In the following, we will prove the second inequality in (2.6), namely ∑i∈Nr |δi| ≤
er ∑i∈Lr |si|.

We distinguish two cases. First, suppose

∑
i∈Lq

|si| ≤ ξr ∑
i∈Lp

|si|. (2.8)

By (2.5), the induction hypothesis, (2.7), (2.8), and ∑i∈Lq |si| ≤ ∑i∈Lp |si|, we derive

∑
i∈Nr

|δi|= |δr|+ ∑
i∈Np

|δi|+ ∑
i∈Nq

|δi|

≤ |sq|+(er− eq) ∑
i∈Lq

|si|+ ∑
i∈Np

|δi|+ ∑
i∈Nq

|δi|

≤ |sq|+ er ∑
i∈Lq

|si|+ ∑
i∈Np

|δi|

≤ ∑
i∈Lq

|si|+ ∑
i∈Nq

|δi|+ er ∑
i∈Lq

|si|+ ∑
i∈Np

|δi|

≤ ∑
i∈Lq

|si|+ eq ∑
i∈Lq

|si|+ er ∑
i∈Lq

|si|+ ep ∑
i∈Lp

|si|

≤ ξr ∑
i∈Lp

|si|+ eq ∑
i∈Lp

|si|+ er ∑
i∈Lq

|si|+ ep ∑
i∈Lp

|si|

= er ∑
i∈Lr

|si|.

Secondly, assume the opposite of (2.8), namely

ξr ∑
i∈Lp

|si|< ∑
i∈Lq

|si|. (2.9)

Then the definition of ξr, the induction hypothesis, (2.9), and ξr ∑i∈Lq |si| ≤ ξr ∑i∈Lp |si|<
∑i∈Lq |si| ≤ ∑i∈Lp |si| imply

∑
i∈Nr

|δi|= ξr ∑
i∈Lr

|si|+ξr ∑
i∈Np

|δi|+ξr ∑
i∈Nq

|δi|+ ∑
i∈Np

|δi|+ ∑
i∈Nq

|δi|

≤ ξr ∑
i∈Lr

|si|+ξrep ∑
i∈Lp

|si|+ξreq ∑
i∈Lq

|si|+ ep ∑
i∈Lp

|si|+ eq ∑
i∈Lq

|si|

≤ ξr ∑
i∈Lr

|si|+ ep ∑
i∈Lq

|si|+ eq ∑
i∈Lp

|si|+ ep ∑
i∈Lp

|si|+ eq ∑
i∈Lq

|si|

= er ∑
i∈Lr

|si|,
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which proves (2.6).
The sharpness of this estimate can be shown by applying the same induction ar-

gument that was already used in the proof of Lemma 2.1. Consider a tree T whose
right children are all leaves. To the only leaf that is a left child, associate some non-
negative real number and let all other leaves satisfy sright( j) = ε j ∑i∈Lleft( j)

si. For any
subtree which consist of a single leaf the equalities in (2.6) are evident. The structure
of T implies that N j \Nleft( j) = { j} and Nright( j) = /0 for all inner nodes j. Assume
equalities in (2.6) for all proper subtrees of the tree with root j, then, using ε j ≤ 1,

sright( j)+ ∑
i∈N j

ξi sright( j) = ε j ∑
i∈Lleft( j)

si + ε j ∑
i∈N j

ξi ∑
i∈Lleft( j)

si

≤ ∑
i∈Lleft( j)

si + ∑
i∈N j

ξi ∑
i∈Lleft( j)

si

= ∑
i∈Lleft( j)

si + ∑
i∈N ˚le f t( j)

δi +ξ j ∑
i∈Lleft( j)

si

= sleft( j)+ξ j ∑
i∈Lleft( j)

si.

Thus, the minimum in (2.5) is always attained for k = right( j), so that (2.5) is equiv-
alent to

δ j ≤ sright( j)+ ∑
i∈N j

ξi sright( j).

Hence, for the considered tree, the assumption (2.5) coincides with (2.1). The re-
mainder argument follows straightforwardly from the last two equalities in the proof
of Lemma 2.1. ut

The final result is designed to imply an error estimate for floating-point summa-
tion with faithful rounding as a corollary. That covers in particular directed rounding.

It is known for this case that the relative error may grow exponentially, so that
some restriction on the number of summands is mandatory. However, in the follow-
ing theorem that restriction is not explicit but hidden in the assumption (2.13). Re-
markably, that assumption depends only on the size of the real sum of the absolute
values of the input data.

Theorem 2.2 Let a binary tree T with n leaves be given. To each leaf associate a
real number xi and to each inner node associate a real number sk forming vectors
x ∈ Rn and s ∈ Rn−1. Denote by σk the sum of the values associated to the children
of an inner node k, and define

δk := sk−σk for 1≤ k ≤ n−1. (2.10)

Let nonnegative real numbers λ , µ be given such that

λ ≤
n

∑
i=1
|xi|< µ. (2.11)
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Define for 1≤ k ≤ n−1

εk :=


|δk|
λ

if |σk|< µ,

|δk|
µ

otherwise,
(2.12)

with the convention 0
0 := 0. Then the assumption

n−1

∑
i=1

εi ≤
µ−λ

λ
(2.13)

implies for 1≤ k ≤ n−1 that

|σk| ≤
n

∑
i=1
|xi|+µ

n−1

∑
i=1

εi <
µ2

λ
. (2.14)

Furthermore, for r denoting the root of T ,

∣∣sr−
n

∑
i=1

xi
∣∣≤ n−1

∑
i=1
|δi| ≤

n−1

∑
i=1

εi

n

∑
i=1
|xi|. (2.15)

Remark 2.8 Inequality (2.13) is the only assumption in Theorem 2.2 to be satisfied.

Remark 2.9 Again, it is possible to replace σk with the sum of absolute values of the
leaves xi and absolute values of perturbations δi in the respective subtree. However,
for reasons of comprehensibility and because εk remains to be defined relative to
either λ or µ , here we refrain from applying this modification.

Proof of Theorem 2.2 For an inner node k denote the set of leaves by Lk and the set
of inner nodes without k itself by Nk. Then (2.10) gives

σk = ∑
i∈Lk

xi + ∑
i∈Nk

δi for 1≤ k ≤ n−1.

Thus (2.12), (2.11), and (2.13) imply for all 1≤ k ≤ n−1

|σk| ≤
n

∑
i=1
|xi|+

n−1

∑
i=1
|δi| ≤

n

∑
i=1
|xi|+µ

n−1

∑
i=1

εi < µ +
µ−λ

λ
µ =

µ2

λ

and prove (2.14).
Note that |δ j| = ε jλ if |σ j| < µ . Thus, if |σ j| < µ for all 1 ≤ j ≤ n− 1, then

λ ≤ ∑
n
i=1 |xi| implies (2.15).

Otherwise, there is an inner node p with |σp| ≥ µ . The assumptions imply that
there also exists an inner node q in the subtree with root p whose both children are
leaves. Thus |σq| = |∑i∈Lq xi| ≤ ∑

n
i=1 |xi| < µ . It follows that there exists a node k

such that
|σk| ≥ µ and ∀ j ∈ Nk : |σ j|< µ.
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Denote J := Nk and J′ := {1, . . . ,n−1}\J, so that |δ j|= ε jλ for all j ∈ J and

n

∑
i=1
|xi|+∑

i∈J
εiλ ≥ ∑

i∈Lk

|xi|+∑
i∈J

εiλ ≥ |σk| ≥ µ.

Then, using (2.13), it follows

n−1

∑
i=1
|δi| ≤∑

i∈J
εiλ + ∑

i∈J′
εiµ =

n−1

∑
i=1

εiµ +∑
i∈J

εi(λ −µ)

≤
n−1

∑
i=1

εi

(
n

∑
i=1
|xi|+∑

i∈J
εiλ

)
+∑

i∈J
εi(λ −µ)

=
n−1

∑
i=1

εi

n

∑
i=1
|xi|+∑

i∈J
εi

(
n−1

∑
i=1

εiλ +λ −µ

)

≤
n−1

∑
i=1

εi

n

∑
i=1
|xi|+∑

i∈J
εi

(
µ−λ

λ
λ +λ −µ

)
=

n−1

∑
i=1

εi

n

∑
i=1
|xi|,

which proves (2.15). ut

3 Application to floating-point systems

Let F ⊆ R be an arbitrary set of real numbers. A mapping +̃ : F×F→ F is called
”nearest-addition” if for all a,b ∈ F:

|(a+̃b)− (a+b)|= inf{| f − (a+b)| : f ∈ F}. (3.1)

That implies that a+̃b = a+ b if a+ b ∈ F. Note that there is no assumption what-
soever on the set F. In particular, for a,b,c,d ∈ F and a+b = c+d, not necessarily
a+̃b = c+̃d.

In Lemma 2.1 and Theorem 2.1 the only assumptions to be satisfied are (2.1) and
(2.5), respectively. Both are a trivial consequence of (1.6). For a ”nearest-addition”
and a,b ∈ F, property (1.6), in turn, follows by

|(a+̃b)− (a+b)|= inf{| f − (a+b)| : f ∈ F}
≤min{| f − (a+b)| : f ∈ {a,b}}
= min{|a|, |b|} .

(3.2)

As a consequence, Lemma 2.1 and Theorem 2.1 hold true for any ”nearest-addition”
(any rounding of ties) over some arbitrary set F⊆ R.

For a k-digit floating-point number system in base β following the IEEE 754
standard, the relative rounding error unit is u := 0.5β 1−k. In the first standard model
for error analysis of floating-point operations the error is defined relative to the real
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result, whereas in the second standard model the definition is relative to the floating-
point result. The rounding error unit u is applicable to both standard models (1.2).
However, if we limit our consideration on the first standard model, the sharp estimate

|(a+̃b)− (a+b)| ≤ u
1+u

|a+b| (3.3)

holds true, see [6, p. 232]. Indeed, (3.3) follows without any reference to a floating-
point grid simply as a consequence of (1.2) and rounding to nearest [10]. Therefore,
we will use the constant u

1+u in the following corollaries where rounding to nearest
is assumed. Moreover note that if the result of a floating-point addition is in the
underflow range there is no rounding error, i.e. the result is equal to the real addition.

Corollary 3.1 Let F be a k-digit floating-point number system in base β , and denote
by s the result of a floating-point summation of a1, . . . ,an ∈F in some nearest-addition
in any order. Then, with u = 0.5β 1−k,∣∣s− n

∑
j=1

a j
∣∣≤ (n−1)

u
1+u

n

∑
j=1
|a j|.

Proof The estimate is an immediate consequence of Theorem 2.1, inequality (3.2),
and the relative rounding error bound u/(1+u) for the first standard model. ut

For the application to dot products, we adapt a similar proof as in [5, Theorem
4.2].

Corollary 3.2 Let F be a k-digit floating-point number system in base β , and denote
by s the result of a floating-point dot product in rounding to nearest of a,b∈Fn. Then,
barring underflow,

|s−aT b| ≤ nu
n

∑
j=1
|a jb j|.

Proof Denote the floating-point approximation to a jb j by x j ∈ F, so that s is the
floating-point sum of the x j. Then, abbreviating v = u/(1+u), Corollary 3.1 implies
|s−∑

n
j=1 x j| ≤ (n−1)v∑

n
j=1 |x j|. Moreover, rounding to nearest implies |x j−a jb j| ≤

v|a jb j|, so that |x j| ≤ (1+v)|a jb j|. Hence,

|s−aT b| ≤
∣∣s− n

∑
i=1

xi
∣∣+ ∣∣ n

∑
i=1

xi−a jb j
∣∣≤ (v+(n−1)v(1+v))

n

∑
j=1
|a jb j|,

and it is easily checked that v+(n−1)v(1+v)≤ nv(1+v)≤ n v
1−v = nu. ut

One application of Theorem 2.2 is the computation of a sum in directed rounding.
An improvement of the classical Wilkinson bound has been proved by Bünger in
[7, Theorem 1]. However, his arguments are involved making heavy use of specific
properties of IEEE 754 floating-point arithmetic. A generalization of his result is as
follows.

A mapping +̃ : F×F→ F is called ”faithful-addition” if, for all a,b ∈ F, a+̃b is
the only floating-point number in the convex hull (a+b)∪(a+̃b). As before, neces-
sarily a+̃b = a+b if a+b ∈ F.

Note that for a faithful-addition upward and downward rounding may be arbitrar-
ily mixed, and, as before, a,b,c,d ∈ F and a+b = c+d does not imply a+̃b = c+̃d.
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Corollary 3.3 Let F be a k-digit floating-point number system in base β , and denote
by s the result of a floating-point summation of x1, . . . ,xn ∈ F using some faithful-
addition. If n≤ 1+ β−1

2 u−1 = 1+(β −1)β k−1, then∣∣s− n

∑
j=1

x j
∣∣≤ (n−1) ·2u

n

∑
j=1
|x j|.

Remark 3.1 For infinite exponent range, recursive summation, and rounding upwards,
sufficiently small ε and x = (1,ε,ε, . . .) show that the estimate is sharp. The restric-
tion on n is mandatory, and it is sharp in the sense that the upper bound on n cannot
be replaced by the next larger integer.

Proof of Corollary 3.3 Let m∈Z such that λ := β m ≤∑
n
i=1 |xi|< β m+1 =: µ . Let σk

be as in Theorem 2.2, and denote by ufp(σk) the largest power of β being less than
or equal to |σk|. If |σk|< µ , then ufp(σk)≤ λ and (2.12) implies

εk =
|δk|
λ
≤ |δk|

ufp(σk)
=
|fl(σk)−σk|

ufp(σk)
≤ 2u,

and otherwise µ ≤ |σk|< µ2/λ = β µ shows ufp(σk) = µ and

εk =
|δk|
µ

=
|δk|

ufp(σk)
=
|fl(σk)−σk|

ufp(σk)
≤ 2u.

Thus, all εk are bounded by 2u. Additionally, the limit on n implies

n−1

∑
i=1

εi ≤ (n−1)2u≤ β −1 =
µ−λ

λ
,

so that the assumption (2.13) in Theorem 2.2 is satisfied. Thus,

∣∣s− n

∑
i=1

xi
∣∣≤ n−1

∑
i=1
|δi| ≤ (n−1) ·2u

n

∑
i=1
|xi|,

and the proof is finished. ut

As a final example, consider a logarithmic number system

F := {±ck : k ∈ Z}∪{0} (3.4)

for some 1 < c ∈ R. Let a,b ∈ F with cm ≤ |a+ b| < cm+1. For a nearest-addition
+̃ : F×F→ F, it follows, similar to (3.3),∣∣∣∣ (a+̃b)− (a+b)

a+b

∣∣∣∣≤ 1
2 (c

m+1− cm)
1
2 (c

m+1 + cm)
=

c−1
c+1

,

so that c−1
c+1 < 1 is the relative rounding error unit. Hence, by Theorem 2.1, the result s

of a floating-point summation of a1, . . . ,an ∈ F in some nearest-addition in any order
satisfies ∣∣s− n

∑
j=1

a j
∣∣≤ (n−1)

c−1
c+1

n

∑
j=1
|a j|.
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For a faithful-addition +̃ : F×F→ F, it follows∣∣∣∣ (a+̃b)− (a+b)
a+b

∣∣∣∣< cm+1− cm

cm = c−1, (3.5)

so that, as in the proof of Corollary 3.3 and with the notation of Theorem 2.2, we con-
clude εk ≤ c−1 for all 1≤ k ≤ n−1. Note that, although (3.5) is a strict inequality,
the right-hand side c−1 cannot be replaced by a smaller constant. Thus the assump-
tion (2.13) is surely satisfied if (n−1)(c−1)≤ µ−λ

λ
= c−1, limiting the number of

summands to n≤ 2.
Indeed, for 1 = c0 ∈ F and e ∈ F with 0 < e < c− 1, rounding upwards implies

(1+̃e)+̃e = c+̃e = c2. Thus, for small enough e, the left-hand side in (2.15) comes
arbitrarily close to c2−1, whereas the right-hand side tends to 2(c−1). Hence (2.15)
is not necessarily satisfied for n > 2.

A reason is as follows. Let N denote the maximal number of summands so that the
condition (2.13) in Theorem 2.2 is surely satisfied. We concluded that N = 1+(β −
1)β k−1 for a k-digit floating-point number system, and N = 2 for a logarithmic num-
ber system. The reason is that in the first case the interval [λ ,µ] in (2.11) corresponds
to some I := [β k,β k+1]. In this interval, the absolute error of a faithful-addition is
constantly bounded by 2u = β 1−k, and N is equal to the number β k− β k−1 + 1 of
elements of F in I. Similarily, for the logarithmic number system, [λ ,µ] corresponds
to I := [ck,ck+1] consisting of N = 2 elements of F.
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