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Abstract. Let A be a real n × n matrix and z, b ∈ Rn. The piecewise lin-

ear equation system z − A|z| = b is called an absolute value equation. It is

equivalent to the general linear complementarity problem, and thus NP hard
in general. Concerning the latter problem, three solvers are presented: One

direct, one semi-iterative and one discrete variant of damped Newton. Their

previously proved ranges of correctness and convergence, respectively, are ex-
tended. Their performance is compared on instances of the XOR separation

problem for support vector machines which can be reformulated as an absolute

value equation.

1. Introduction

Denote by Mn(R) the space of n × n real matrices and let A ∈ Mn(R) and
z, b ∈ Rn. The piecewise linear equation system

z −A|z| = b(1.1)

is called an absolute value equation (AVE) and was first introduced by Rohn in
[20]. By decomposing z into nonnegative vectors u and v such that z = u− v and
uᵀv = 0 an equivalent linear complementarity problem (LCP)

v = −(I −A)−1b+ (I −A)−1(I +A)u(1.2)

is obtained. In [17, P. 216-230] Neumaier authored a detailed survey about the
AVEs intimate connection to the research field of linear interval equations. Espe-
cially closely related system types are equilibrium problems of the form

Bx+ max(0, x) = c,(1.3)

where B ∈ Mn(R) and x, c ∈ Rn. (A prominent example is the first hydrodynamic
model presented in [3].) Using the identity max(s, t) = (s+ t+ |s− t|)/2, equality
(1.3) can be reformulated as

Bx+
x+ |x|

2
= c ⇐⇒ (2B + I)x+ |x| = 2c,

and for regular (2B + I) the left equality is equivalent to an AVE (1.1).
One connection relevant to the authors of this work concerns nonsmooth opti-

mization: Piecewise affine systems of arbitrary structure may arise as local lineariza-
tions of piecewise differentiable objective functions [9] or as intermediary problems
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in the numerical solution of ordinary differential equations with nonsmooth right-
hand side [8]. Such system can be, with a one-to-one solution correspondence,
transformed into an AVE [7, Lem. 6.5].

This position at the crossroads of several interesting problem areas gives rele-
vance to the task of developing efficient solvers for the AVE. The latest publications
on the matter include approaches by linear programming [13] and concave mini-
mization [11], as well as a variety of Newton and fixed point methods (see, e.g., [3],
[27], [10]). In this article we will present and further analyze three solvers for the
AVE – one direct, one semi-iterative, one in the spirit of damped Newton methods
– that were developed in [7, 25], [18], and [6], respectively. This especially means
that we will recall and further extend convergence results for all three algorithms.

Moreover, we will reformulate the frequently discussed XOR-Problem for support
vector machines (SVMs) (see, e.g. [2, 15]) as an AVE and test the algorithms’
performance on it.

Content and structure: In Section 2 we will assemble the necessary preliminaries
from the literature and (re-)prove some auxiliary results. In Sections 3-5 the three
aforementioned solvers are presented; correctness / convergence ranges are proved
and key aspects of a performant implementation are addressed. In Section 6 the
AVE-formulation of the XOR-problem is derived. Numerical experiments make
up Section 7: The algorithms’ performances are investigated both with regard to
random data as well as the XOR-problem. The article is concluded by some final
remarks in Section 8.

2. Preliminaries

We denote by [n] the set {1, . . . , n}. For vectors and matrices absolute values
and comparisons are used entrywise. Zero vectors and matrices are denoted by 0.
Let c ∈ Rn, then we denote by diagn(c) a diagonal matrix in Mn(R) with entries
c1, . . . , cn. We omit the subscript n and write diag(c) or diag(c1, . . . , cn) if the
dimension is clear from the context.

A signature matrix Σ, or, briefly, a signature, is a diagonal matrix with entries
+1 or −1, i.e. |Σ| = I. The set of n-dimensional signature matrices is denoted by
Sn. A single diagonal entry of a signature is a sign σi (i ∈ [n]). Let z ∈ Rn. We
write Σz for a signature, where σi = 1 if zi ≥ 0 and −1 else. Clearly, we then have
Σzz = |z|. Using this convention, we can rewrite (1.1) as

(I −AΣz)z = b .(2.1)

In this form it becomes apparent that the main difficulty in the computation of a
solution for (2.1) is to determine the proper signature Σ for z. That is, to determine
in which of the 2n orthants about the origin z lies. This is NP-hard in general [12].

Denote by ρ(A) the spectral radius of A and let

ρ0(A) ≡ max{|λ| : λ real eigenvalue of A}
be the real spectral radius of A. Then its sign-real spectral radius is defined as
follows (see [21, Def. 1.1]):

ρR(A) ≡ max {ρ0(ΣA) : Σ ∈ Sn} .
The exponential number of signatures Σ accounts for the NP-hardness of the com-
putation of ρR(A) [21, Cor. 2.9]. It is easy to check that Sn is a finite sub-
group of Gln(R). Thus, for a fixed signature Σ̄, the sets {Σ(Σ̄A) : Σ ∈ Sn} and
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{ΣA : Σ ∈ Sn} are identical modulo a permutation. Furthermore, since all Σ ∈ Sn
are obviously involutive, i.e., Σ−1 = Σ, the spectra of A and ΣAΣ are identical.
These observations immediately yield the useful identity

ρR(A) = ρR(Σ1A) = ρR(AΣ2) = ρR(Σ1AΣ2) ∀ Σ1,Σ2 ∈ Sn.

Recall that a real (or complex) square matrix is called a P -matrix if every principal
minor is positive [5, p. 147]. An LCP has a unique solution for all right hand
sides if and only if its system matrix is a P -matrix [5, p. 148, Thm. 3.3.7]. The
solvability properties of (2.1) and the quantity ρR(A) are heavily intertwined (cf.
[21], [17, p. 220, Thm. 6.1.3-5]):

Theorem 2.1. Let A ∈ Mn(R). Then the following are equivalent:

(1) ρR(A) < 1.
(2) (I −A)−1(I +A) is a P -matrix.
(3) The system (I −AΣz)z = b has a unique solution for all b ∈ Rn.
(4) The piecewise linear function ϕ : Rn → Rn, z → z +A|z| is bijective.
(5) det(I −AΣ) > 0 for all Σ ∈ Sn.
(6) det(I−AD) > 0 for all real diagonal matrices D ∈ Mn(R) with ‖D‖∞≤ 1.
(7) I −AΣ is a P -matrix for all Σ ∈ Sn.

We provide a brief assertion of the statements essential to our investigation. For
a complete proof of Theorem 2.1 we refer to the afore cited references.

Proof. (1)⇒ (5) : ρR(A) < 1 implies that the real eigenvalues of all (I−AΣ),Σ ∈
Sn, are positive [18].

(2)⇔ (3) : Follows from (1.2).
(3)⇔ (4) : Clear.
(4) ⇒ (5) : The matrices (I − AΣ),Σ ∈ Sn, are the Jacobians of the selection

functions of ϕ. It is well known that a bijective piecewise linear functions is co-
herently oriented in that all its Jacobians have the same nonzero determinant sign.
Proof that all are positive: Assume det(I − AΣ) < 0 for all Σ ∈ Sn. Then AΣ
has at least one real eigenvalue < −1 for all Σ ∈ Sn. This implies that the convex
hull of I − A and I + A contains a singular matrix, contradicting the linearity of
the determinant for rank-1 updates.

(5)⇒ (4) : A coherently oriented piecewise linear function is surjective [23, p.32].
Moreover, the claim implies that all generalized Jacobians of ϕ in the sense of [4]
are nonsingular, which implies local injectivity everywhere by [4, Prop. 7.1.16].
But, by [23, p.44, Thm. 2.3.2.1], piecewise linear functions are globally injective if
they are locally injective everywhere.

(5)⇒ (6) : This follows, again, from the linearity of the determinant for rank-1
updates.

(6)⇒ (1) : If it was ρR(A) ≥ 1, we could find a diagonal matrix D wit ‖D‖∞ ≤ 1
such that I −AD was singular, contradicting the hypothesis. �

There exist various other proofs for the equivalencies listed in Theorem 2.1.
See, e.g., [21, 17, 18]. Moreover, note that the sign-real spectral radius is but one
facet of the unified Perron-Frobenius theory developed in [22] which extends several
key properties of the Perron root of nonnegative real matrices to general real and
complex matrices via the concepts of the sign-real and sign-complex spectral radius,
respectively. A unified expression for these three quantities is derived in [22, Thm.
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2.4]:

ρK(A) = max
06=x∈Kn

min
xi 6=0

∣∣∣∣ (Ax)i
xi

∣∣∣∣ ,
where K ∈ {R+,R,C} and A ∈ Mn(K).

Remark 2.2. An important fact is that ρR(A) is bounded by all p-norms [21, Thm.
2.15]. It affirms that all systems considered in the sequel are uniquely solvable.

The following simple observation is key to the subsequent discussion:

Proposition 2.1. Let A ∈ Mn(R) and z, b ∈ Rn such that they satisfy (2.1). If
‖A‖∞< 1, then for at least one i ∈ [n] the signs of zi and bi have to coincide.

Proof. Let zi be an entry of z s.t. |zi| ≥ |zj | for all j ∈ [n]. If zi = 0, then
z = 0 and thus b ≡ z − A|z| is the zero vector as well – and the statement holds
trivially. If |zi| > 0, then |eᵀiA|z|| < |zi|, due to the norm constraint on A. Thus,
bi = zi − eᵀiA|z| will adopt the sign of zi. �

We do not know though, for which indices the signs coincide. The theorem below
states restrictions on A which guarantee the coincidence of the signs of zi and bi
for all i ∈ [n] where |bi| ≥ |bj | for all j ∈ [n] and thus provide the basis for the
convergence proofs in Sections 3 and 4. Now let b ∈ Rn and define

Ibmax ≡ {1 ≤ i ≤ n : |bi| ≥ |bj | ∀ j ∈ [n]} .

Theorem 2.3. Let A ∈ Mn(R) and b, z ∈ Rn such that (2.1) is satisfied. Then the
set

Eq(A, b, z) ≡ {i ∈ Ibmax : sign(bi) 6= sign(zi)} ,
where sign denotes the signum function, is empty if either of the following conditions
is satisfied.

(1) ‖A‖∞ < 1
2 .

(2) A is irreducible with ‖A‖∞ ≤ 1
2 .

(3) A is strictly diagonally dominant and ‖A‖∞ ≤ 2
3 .

(4) |A| is tridiagonal and symmetric with ‖A‖∞ < 1 and n ≥ 2.

The first three points are cited from [18, Thm. 3.1]. We will prove the fourth
point and reprove the first two by somewhat more elegant means than in the latter
reference. This includes a new proof for the following lemma.

Lemma 2.4. ([18, Lem. 3.2]) Let A ∈ Mn(R) with ‖A‖∞ < 1
2 or irreducible with

norm ‖A‖∞ ≤ 1
2 . Then the inverse of B = I − A is strictly diagonally dominant

and has a positive diagonal.

Proof. As ‖A‖∞ ≤ 1
2 < 1, the inverse of (I − A) exists and can be expressed via

the Neumann series

(I −A)−1 = I +

∞∑
k=1

Ak = I +A(I −A)−1 with ‖A(I −A)−1‖ ≤ ‖A‖∞
1− ‖A‖∞

≤ 1.

This already proves diagonal dominance for ‖A‖∞ < 1
2 .

To further explore the diagonal dominance of a matrix sum I + M + R, where
we will use M = Am and R =

∑
k 6=mA

k, we bound the gap in the inequality below
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as

|1 +Mii +Rii| −
∑
j 6=i

|Mij +Rij | ≥ |1 +Mii| − |Rii| −
∑
j 6=i

(|Mij |+ |Rij |)

= |1 +Mii|+ |Mii| −
n∑
j=1

(|Mij |+ |Rij |) .(2.2)

Thus we get strict diagonal dominance in row i both for ‖M‖∞+‖R‖∞ < 1 and in
the case of ‖M‖∞+‖R‖∞ = 1 andMii > 0, where the partition A(I−A)−1 = M+R
can be chosen differently for every i = 1, . . . , n.

If ρ(A) < 1
2 , then (2A)k converges toward zero, so that there is some K with

‖(2A)K‖ ≤ 1
2 and thus

∞∑
k=1

‖Ak‖ ≤ ‖A∞‖
1− ‖A‖∞

1− ‖A‖K∞
1− ‖AK‖∞

≤ 1− 2−K

1− 2−(K+1)
< 1 ,

ensuring strict diagonal dominance of (I −A)−1.
In the case ρ(A) = 1

2 the assumptions of the Wielandt theorem [14, 26] are
satisfied, ρ(A) = ρ(|A|) = ‖A‖∞, such that there is a sign s and a signature matrix
Σ = diag(σ1, . . . , σn) with |s| = |σi| = 1, i = 1, . . . , n, so that A = s T−1 |A|T and
thus for the powers of A ∣∣Ak∣∣ =

∣∣ skT−1 |A|k T
∣∣ = |A|k.

The diagonal elements of |A|k are sums of products over k-cycles of positive el-
ements. Since |A| is irreducible there is at least one ki-cycle, ki ∈ [n], for each
diagonal element at position i. Thus we find (|A|ki)ii = |(Ak)ii| > 0. For the
square of that power we note that the diagonal element satisfies the identity

(2.3)

∣∣∣∣∣∣
n∑
j=1

(Aki)ij(A
ki)ji

∣∣∣∣∣∣ =
(∣∣A2ki

∣∣)
ii

=
(∣∣Aki∣∣2)

ii
=

n∑
j=1

(|Aki |)ij(|Aki |)ji .

By the triangle inequality, the identity of the leftmost and rightmost terms is only
possible if all the terms in the sum on the left have the same sign. As (Aki)2

ii > 0,
all those terms are positive and consequently (A2ki)ii > 0, which proves diagonal
dominance in row i by setting M = A2ki and R =

∑
m6=2ki

Am in the separation

inequality (2.2). This can be done for any index thus proving overall diagonal
dominance of (I −A)−1. �

Proof. (Theorem 2.3) (1) and (2): Let A ∈Mn(R) with ‖A‖∞ < 1
2 or irreducible

with norm ‖A‖∞ ≤ 1
2 . Moreover, assume set Σz ≡ Σ. Then (I − AΣ)−1 is

strictly diagonally dominant by Lemma 2.4 since both irreducibility and the norm
constraint are invariant under scalings of A with a signature matrix. Hence, zi =
eᵀi (I −AΣ)−1b will adopt the sign of bi for all i ∈ Ibmax.

(3): See [18].
(4): The proof is performed inductively. The (2×2)-case can be verified by brute

force computation, which we omit for the sake of readability. (We note that it is
the only part of the proof that makes use of the symmetry of A.) Now assume the
statement of the theorem holds for an N ≥ 2, but the tuple (A, z, b) contradicts
it in dimension N + 1. We restate two observations from the proof of [18, Thm.
3.1.3]:
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• Since ‖A‖∞< 1, it is sign(zi) = sign(bi) for all i ∈ [n], if |z1| = · · · = |zn|.
Thus we may assume that not all entries of z have the same absolute value.
• Define Izmax analogously to Ibmax. If ‖A‖∞< 1 and i ∈ Izmax, we have∑

j |aijzj | < |zi| and hence sign(bi) = sign(zi). Consequently, if there

existed a tuple (A, z, b) which violated the claim of the theorem, for any
i ∈ Eq(A, b, z) we would have i 6∈ Izmax.

As N + 1 ≥ 3, we can organize the system without loss of generality such that
N ∈ Izmax, while the last row does not hold the (only) contradiction. Then there
exists a scalar ζ ∈ [0, 1] such that

ζ · |zN | = |zN+1| =⇒ ζ · aj,N+1 · |zN | = aj,N+1 · |zN+1|.

Let A ∈ Mn(R) and denote by Aa,b a matrix in Mn−1(R) that is derived from A
by eliminating its a-th row and b-th column. Then

Ā ≡ AN+1,N+1 + diagN (0, . . . , 0, ζaN,N+1)

is still tridiagonal with ‖A‖∞< 1 and |A| symmetric. Accordingly, for z̄ ≡ (z1, . . . , zN )ᵀ

and b̄ ≡ (b1, . . . , bN )ᵀ we have

z̄ + Ā|z̄| = b̄.

Hence, the tuple (Ā, z̄, b̄) contradicts the induction hypothesis for dimension N . �

3. Signed Gaussian Elimination

If one is sure of the sign σk of zk one can remove this variable from the right
hand side of the AVE. Let A∗k denote the k-th column Aek = (Ajk)j and Aj∗ the
j-th row eᵀjA. Then the removal of the variable is reflected in the formula

(I −A∗keᵀkσk)z = b+ (A−A∗keᵀk)|z|.

The inverses of rank-1-modifications are well-known to be (see, e.g. [1])

(I − uvᵀ)−1 = I +
1

1− vᵀu
uvᵀ(3.1)

so that it is easy to remove the matrix factor on the left side. We then have

z = b̄+ Ā|z| ,(3.2)

where

b̄ = b+
1

1−Akkσk
σkA∗k bk(3.3)

and

Ā = Ared +
1

1−Akkσk
σkA∗k (Ared)k∗ ,(3.4)

with

Ared = A−A∗keᵀk = A(I − ekeᵀk) .(3.5)

In Python this can be achieved as:
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Function 1. Sign Controlled Elimination Step
defdefdef elim(A,b,k,sigk):

sk = A[:,k]*sigk;

A[:,k] = 0;

sk = sk/(1-sk[k])

b = b + sk*b[k];

A = A + sk*A[k,:];

This procedure corresponds to one step of Gaussian elimination. Now let J ⊆ [n]
be an index set and define

bmaxJ ≡ {i ∈ J : |bi| ≥ |bj | ∀j ∈ J} .
Using this convention we can give the pseudocode of a slight modification of the
algorithm that was introduced as signed Gaussian elimination (SG) in [18]:

Algorithm 2. Signed Gaussian Elimination
sge(A,b):

setsetset J = [n];

whilewhilewhile (#J > 1) do:

determine bmaxJ;

forall k ininin bmaxJ setsetset sigk = sig(bk);

forall k ininin bmaxJ do elim(A,b,k,sigk);

J = J\ bmaxJ;

endwhile

perform reverse substitution forforfor (I-A)z = b;

returnreturnreturn z

Theorem 3.1. Let A ∈ Mn(R) and z, b ∈ Rn such that (1.1) is satisfied. If A
conforms to any of the conditions listed in Theorem 2.3, then the signed Gaussian
elimination computes the unique solution of the AVE (1.1) correctly.

Proof. It was already noted that criteria (1)-(4) imply the unique solvability of the
AVE (Remark 2.2). We may thus focus on proving the correctness of the algorithm:

Theorem 2.3 ensures the correctness of the sign-picks. The conditions listed
in Theorem 2.3 are clearly invariant under the (sign controlled) elimination step.
Hence, the argument applies recursively down to the scalar level. �

For dense A the SG has a cubic computational cost. For A with band structure
it was shown in [18] that the computation has the asymptotic cost of sorting n
floating point numbers. Moreover, note that the SG is numerically stable, since
I −AΣ is strictly diagonally dominant if ‖A‖∞ < 1.

For counterexamples which demonstrate the sharpness of the conditions (1)-(3)
in Theorem 2.3 with respect to the SG’s correctness, see [18]. For the remaining
point, consider the identity as A.

4. Full Step Newton Method

In this section we analyze the full step Newton method (FN) which is defined
by the recursion

zk+1 = (I −AΣk)−1b ,(4.1)

where Σk ≡ Σzk . The iteration has the terminating criterion

zk = zk+1 .
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It was developed in [7] and is equivalent to the semi-iterative solver for the equilib-
rium problem (1.3) developed in [3]. A first, albeit rather restrictive, convergence
result is [7, Prop. 7.2]:

Proposition 4.1. If ‖A‖p < 1/3 for any p-norm, then the iteration (4.1) converges
for all b in finitely many iterations from any z0 to the unique solution of (2.1).
Moreover, the p-norms of both zi−z as well as (I−AΣi)zi+1− b are monotonically
reduced.

Moreover, in [7, Prop. 7] convergence was proved for the first two restrictions
on A in Theorem 2.3. The following extends this result to the criteria in Theorem
2.3.3-4.

Theorem 4.1. Let A ∈ Mn(R) and z, b ∈ Rn such that (1.1) is satisfied. If A
conforms to any of the conditions listed in Theorem 2.3, then for any initial vector
z0 ∈ Rn the full step Newton method (4.1) computes the unique solution of the AVE
(1.1) correctly in at most n+ 1 iterations.

Proof. Note that all conditions listed in Theorem 2.3 are invariant under scalings
of A by a signature matrix. Now assume that z satisfies the equality

z −Az = b

and set Σ ≡ Σz. Then, since ΣΣ = I, we have

b = z −AΣΣz ≡ z −A′|z| ,

andA′ is still strictly diagonally dominant with ‖A‖∞ ≤ 2/3. This implies Eq(A′, b, z)
is empty. Hence, for all edges (Σ,Σ′) of G(A, b) we have

σ′ii = 1 if bi ≥ 0 and σ′ii = −1 else ∀ i ∈ bmax .

That is, the signs with index in Ibmax are fixed throughout all iterations. Now
assume i ∈ Ibmax. Then for all k ≥ 1 we will have sign(zki ) = sign(bi). This allows
us to rewrite the i-th equation in (1.1) and express the zki as a linear combination of
the other zkj by the transformations (3.2)-(3.5) of A and b to Ā and c̄, respectively,
which corresponds to one step of Gaussian elimination. As mentioned in the proof
of Theorem 3.1, all restrictions listed in Theorem 2.3.1-4 are invariant under the
latter operation, which implies that the argument applies recursively and all signs
of z are fixed correctly in at most n + 1 iterations. Again, we remark that the
conditions in Theorem 2.3.1-4 imply the uniqueness of the solution at which we
arrive via the afore described procedure. �

Example 4.2. Let

A ≡
[
ε
2

1+ε
2

0 1
2

]
and z ≡

[
ε
2
1

]
.

Then, for b ≡ z − A|z| we have b = (− 2+ε
4 , 1

2 )ᵀ. And clearly |b1| > |b2|, but
sign(b1) 6= sign(z1). This example with ‖A‖∞ = 1/2 + ε leads the SG astray [18,
Prop.5.2]. But an elementary calculation shows that for n ≤ 2 we have convergence
of the FN method if ‖A‖∞ < 1 [19]. Moreover, it is easy to see that for the cyclic
counterexample presented below, the SG will immediately fix all signs correctly
and thus compute the solution of the system, while the FN may cycle for certain
initial signatures.
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Figure 1. Iteration graph of Example 4.3 for n = 3.

This demonstrates that, while the correctness and convergence proofs of SG and
FN, respectively, are based on mostly analogous constructions, the algorithms are
neither equivalent nor does either correctness or convergence range encompass the
other.

4.1. Limitations. If for all signature matrices the inverse of (I − AΣ) is defined,
then the iteration (4.1) induces a directed graph with vertex set Sn, where Σ(zk) is
connected by an outgoing edge to Σ(zk+1). We call this graph the iteration graph
of the tuple (A, b) and denote it by G(A, b).

Example 4.3. For n > 2 set b = (1, . . . , 1)ᵀ ∈ Rn and define A ∈ Mn(R) as the
cyclic Töplitz matrix

A =



0 0 . . . 0 a
a 0 . . . 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 . . . 0 a 0

.
In [7] it was shown that, if a ∈ R satisfies

1

2
+

1

2n
≤ a ≤ 1√

2
,

iteration (4.1) cycles between n distinct and definite points when the initial signa-
ture Σ contains exactly one negative component and no zeros.

Birthday attack. Consider the following approach at the solution of (2.1): Treat Sn
as an urn; remove a signature Σ0 uniformly at random, along with all signatures in
G(A, b) that can be reached from Σ. Then repeat the procedure for another random
signature Σ1, and so forth.

If G(A, b) has a sufficiently small number of connected components, this method
yields a high probability of finding one that contains a solution. In cryptology a
similar approach at finding collisions of hash functions is known as birthday at-
tack, cf. [24]. We denote the probability of ”drawing” a solution for (2.1) in this
manner with k sign picks by pkA,b. Even for uniquely solvable systems pkA,b may be

insignificantly small for reasonably sized k (in the sense of ”polynomial in n”).

Proposition 4.2. There exist irreducible, uniquely solvable systems (2.1) such that

pkA,b ≤
2b

n
3 c + 4

∑k−1
i=0 i

2n
,
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where n is the dimension of the AVE.

Proof. Let C ∈ M3(R) be a cyclic Töplitz matrix as in the counterexample pre-
sented above and define c ≡ (1, 1, 1)ᵀ. Then G(C, c) has 8 vertices and a simple
calculation shows:

(1) G(C, c) has two connected components. 6 of its vertices belong to the
subgraph that contains the cycle and 2 vertices belong to the subgraph
which contains the solution.

(2) No vector (I − CΣ)−1c has a zero component.

Now define the following block diagonal matrix
C 0 . 0 0
0 C . 0 0
. . . . .
0 0 . C 0
0 0 . 0 D

 ≡ Ā ∈ Mn(R),

where D ≡ C if nmod 3 = 0 or else D ≡ 0, where 0 denotes the zero-matrix in

dimension nmod 3. Moreover, set bᵀ ≡ (1, . . . , 1)ᵀ ∈ Rn.
As Ā is clearly reducible, there are no interactions between the subsystems,

which means that the number of connected components of G(A, b) is simply

[# conn. comp. G(C, c)]# C−blocks · [# conn. comp. G(D, d)] = 2b
n
3 c .

Denote by Sl(C, c) the connected component of G(C, c) that contains the solution
to c = z +C|z|. Then, if we pick a signature uniformly at random, the probability
of it belonging to the subgraph that contains the solution is(

# vertices in Sl(C, c)

# vertices in G(C, c)

)bn
3 c

=

(
2

8

)bn
3 c

.

Hence, the probability of a single signature, picked uniformly at random, lying in
one of the subgraphs that do not contain a solution is

1−
(

2

8

)bn
3 c
≥ 1− 2b

n
3 c

2n
.

A simple calculation shows that every sign pick removes at most 4 signatures from
Sn. For simplicity we assume that the number of removed signatures is always 4.
Then we get, by the Bernoulli inequality for variable factors (see, e.g., [16]), that

p ≥
k−1∏
i=0

(
1− 2b

n
3 c + 4i

2n

)
≥ 1−

2b
n
3 c + 4

∑k−1
i=0 i

2n
,

where p is the probability of k picks landing in a subgraph that contains no solution.
Due to observation (2) and the continuity of the matrix inversion G(Ā, b) is

stable under perturbations of Ā. Hence there exists an irreducible matrix A in a
neighborhood of Ā such that G(Ā, b) and G(A, b) are isomorphic. This concludes
the proof. �
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4.2. Sherman-Morrison-Woodbury-Updates. The iterations of the FN algo-
rithm have the significant practical drawback that in each step the whole updated
linear system is inverted, which is rather excessive if only a few signs are updated
– and we will see that this is the case for the majority of the steps. Using the the
general form of the Sherman-Morrison-Woodbury-formula (SMW)

(B + uvᵀ)−1 = B−1 − B−1uvᵀB−1

1 + vᵀB−1u
,(4.2)

which was already cited in a specialized form in (3.1), the iteration costs can be
reduced significantly. In the above form the SMW formula has a cost of roughly
3n2 multiply-adds for the update of a dense system. The structure of the updates
in iteration (4.1) allows to reduce the cost further to roughly n2 multiply-adds per
updated sign: Define

B ≡ I −AΣ .

If we update B to B′ ≡ I−AΣ′, where Σ′ differs from Σ only in the i-th component,
i. e. σ′i = −σi, we can choose u and v in (4.2) as follows

u ≡ 2AΣei and v ≡ ei,
so that

B′ = I −AΣ + 2AΣeie
ᵀ
i = I −AΣ(I − 2eie

ᵀ
i )

implements the sign change in the ith column of A. Plugging this into the right
hand side of (4.2) and using B−1AΣ = B−1 − I gives:

(B + uvᵀ)−1 = B−1 − 2[B−1AΣei][e
ᵀ
iB
−1]

1 + 2eᵀiB
−1AΣei

= B−1 − 2

2eiB−1eᵀi − 1

[
B−1ei − ei

] [
eᵀiB

−1
]
.(4.3)

A direct Python implementation of this update for one changed sign matrix is,
using H = B−1 as the stored inverse and zn= B−1b as the solution according to
the current signature:

Function 3. Sherman Morrison Woodbury Update
defdefdef switch_sign(H,zn, k):

u = H[:,k];

u[k] -= 1;

u /= H[k,k] -0.5;

zn -= u*zn[k]

H -= u*H[k,:]

It can easily be seen that the cost of an iteration step is roughly m·n2 multiply-adds
plus m · n multiplications, where m denotes the number of updated signs.

5. Piecewise (Linear) Newton Method

If ‖A‖∞ < 1 then the map F (z) ≡ z − A|z| − b is bijective (Theorem 2.1 and
Remark 2.2). Given a fixed initial point z0 the pre-image of the ray through F (z0),

R(z0) ≡ {z ∈ Rn|∃t ≥ 0 : F (z) = tF (z0)}
is a piecewise linear affine curve where the linear segments are the intersections
of R(z0) with the orthants of Rn. Indeed, if the sign of z(s) = F−1(sF (z0)) is
constant σ ∈ {±1}n on a segment s ∈ (t − ∆t, t), then with Σ = diag(σ) and
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zσ = (I − AΣ)−1b one has F (z(s)) = (I − AΣ)z(s)− b = sF (z0) for s ∈ [t−∆t, t]
and thus

tz(s)− sz(t) = (t− s)zσ ⇐⇒ z(s) = s
t z(t) + (1− s

t )zσ

so that z(s) is a point on the line from z(t) to zσ. To find a solution to F (z) = 0
it is sufficient to follow this curve from z0 = z(1) to the solution z(0).

5.1. Exact path-following. Starting from z0 one can pass from one end-point zj
of R(z0) to the next by repeatedly executing

(1) Determine the sign vector σ so that with Σ = diag(σ), zσ = (I−AΣ)−1b the
sign vector in direction zσ−zj is equal to σ, that is, sign(zj+ε(zσ−zj)) = σ
for all sufficiently small ε > 0. If zj is an inner point of its orthant, then this
task is trivial. The end-points zj of the linear segments will lie in at least
one coordinate plane for j ≥ 1 which still gives a unique choice for the next
sign vector. If zj lies in the intersection of m > 1 coordinate planes, then
one has to try up to 2m−1 sign combinations to find the correct signature.

(2) Determine the largest τ ∈ (0, 1] so that sign(zj + t(zσ − zj)) = σ for all
t ∈ (0, τ).

(3) Set zj+1 = zj +τ(zσ−zj). If τ = 1 then obviously zj+1 = zσ is the solution
of the equation F (z) = 0.

To resolve the sign-determination in the first step one could employ a lower-
dimensional variant of the signed Gaussian elimination. To be successful the more
restrictive assumptions of Theorem 2.3 apply.

5.2. Systematic Perturbation of the Path. The fact that the path R(z0) meets
the intersection of multiple coordinate planes is not stable under perturbation of z0.
Instead of changing the initial point one may apply some small perturbations to the
computation of the sequence zj . This can be achieved by different methods. One
can restart the iteration from a random perturbation of zj+

τ
2 (zσ−zj) which has the

advantage to lie inside the orthant of signature σ, requiring no immediate updates of
the inverse (I −AΣ)−1. Another way to introduce some quasi-randomness system-
atically is to over-shoot the orthant boundary and select zj+1 from the extension
of the current segment into the next orthant. This has the additional advantage
that the signature determination in the first step is always trivial.

(1) Compute the signature σ = sign(zj), set Σ = diag(σ) and zσ = (I−AΣ)−1b.
(2) Determine 0 < τ1 < τ2 < 2 so that sign(zj + t(zσ − zj)) is constant for

t ∈ (0, τ1) and for t ∈ (τ1, τ2).
(3) Set τ = λmin(1, τ1) + (1 − λ) min(1, τ2) and zj+1 = zj + τ(zσ − zj) with

some constant λ ∈ (0, 1). If τ = 1 then zj+1 = zσ is the solution of the
AVE.

In pseudocode this is captured by

Function 4. Piecewise Newton Method
pnm(A,b,z):

H = linalg.inverse( I - A*diag(sig(z)) )

zn = H*b

whilewhilewhile norm(z-zp) > eps*norm(z):

dz = z - zp;

determine tau fromfromfrom z, dz;

setsetset z = z + tau*dz

determine ininin idx the sign change indices
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forall k ininin idx do switch_sign(H,zp ,k);

endwhile

returnreturnreturn z

The motivation of a small perturbation of path R(z0) would demand that λ > 0
is a small parameter. Experiments show that the number of steps to the solution
does not significantly differ if λ is varied in the interval (0.1, 0.9).

5.3. Remarks on non-contractive A. In case that the sign-real spectral radius
of A is ≤ 1, one loses the bijectivity of F and possibly also its surjectivity. One
consequence is that the set R(z0) = {z|∃t ≥ 0 : F (z) = tF (z0)} may have multiple
components, and the component of z0 may contain no root of F . For instance,
descending branches may meet at some orthant boundary going in with no out-
going branch from that point. This situation is locally stable, a small value of λ will
lead to a sequence that oscillates along the orthant boundary for some iterations.
Using a large value of λ gives better chances to jump out of this trap.

5.4. Remarks on SMW-Updates. Let J and J ′ be the Jacobians that are active
on the orthants P and P ′ which are identified by the signatures σ and σ′, respec-
tively. Moreover, denote by k the number of signs wherein σ and σ′ are not equal.
Then the number of orthants that intersect in P ∩ P ′, the common facet of P and
P ′ equals 2k and we have

dim(P ∩ P ′) = n− k .

The exact path following algorithm, in a traversal from P to P ′, requires precisely
k SMW-updates as discussed in Section 4.2 to transform J into J ′. The algorithm
based on systematic perturbation (ideally) requires only one.

6. Support Vector Machines and XOR-Problem as AVE

The adaptation of Support Vector Machines to a given data set is a quadratic
programming problem with linear inequality constraints. The associated KKT
system can be formulated as a Linear Complementarity Problem with a P-matrix
or as a Kojima system, which can, in turn, be reformulated as an Absolute Value
Equation. By Theorem 2.1.(2) this problem has a sign-real spectral radius < 1
and thus a unique solution. However, the stronger conditions for correctness of
the signed Gaussian elimination are not necessarily satisfied. Hence, this class of
problems allows to construct interesting test cases for the AVE solvers. We will use
2-dimensional data sets for which the solutions can be visualized.

6.1. Support Vector Machines. Support vector machines are functions which
separate two point sets of data in some space Rn and thus are building blocks for
classification algorithms. The separating function for a SVM has the form

S(w, x) = 〈w, φ(x)〉

where φ : Rn → H is a function into some Hilbert space H, w ∈ H is the vector
representing the parameters of that function class and 〈·, ·〉 is the scalar product on
H.

To separate two disjoint point sets A and B the value −1 is assigned to A and
1 to B so that samples can be combined as pairs (x, y) with y = −1 for x ∈ A
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and y = 1 for x ∈ B. Instead of demanding f(w, x) = y resp. yf(w, x) = 1 one
demands the weakened condition

y S(w, x) ≥ 1

so that the sets are separated by the pre-image of [−1, 1].
Common examples for Hilbert spaces and embeddings include:

• Linear functions: H = Rn+1, φ(x) = (1, x), w = (b, w̄) and S(w, x) =
b+w̄ᵀx, so that both sets are on the opposite sides of the plane 〈w, x〉 = −b
with a minimal distance of 1

‖w‖ from the plane. This implies the restriction

that not only the sets A,B but also their convex hulls have to be disjoint.

• Gauss kernels: H = L2(Rn), φ(x) =
[
z 7→ exp

(
‖z−x‖

2σ2

)]
with some locality

constant σ. Here the resulting approximations of the sets A and B are
blobs around balls of radius ∼ σ about the sampling points.
• Polynomial functions: H = R|E|, φ(x) = (xα : α ∈ E) where E ⊂ Nn is a

set of multi-indices α enumerating the monomials xα = xα1
1 · ·x

α2
2 · · ·xαn

n .
Using a scaled euclidean scalar product 〈u, v〉 =

∑
α∈E cαuαvα results in

the polynomial function S(w, x) =
∑
α∈E cαwαx

α. The separating set

S(w)−1([−1, 1]) = {x : S(w, x) ∈ [−1, 1]} has a flexible shape, increasingly
so with increasing degree.

6.2. The Learning Task. Given are samples (xk, yk), k = 1, . . . , N with yk = ±1
which fall into one of two disjoint sets A and B. To select a parameter vector w
among the admissible ones for a given sample

{w ∈ H : ykf(w, xk) ≥ 1 ∀k = 1, . . . , N} ,

where each inequality defines a half-space in H, one can choose the norm minimal
vector. This leads to the optimization problem

min f(w) =
1

2
‖w‖2 such that gk(w) = 1− ykf(w, xk) ≤ 0 .

At the minimizer, if it exists, some of the constraints will be exactly satisfied. These
are the active constraints. Let I0 be the set of active indices, then the minimizer
takes the form

w∗ =

N∑
k∈I0

λk ykφ(xk) ,

where the Lagrange multipliers λk satisfy the linear system

1 =
∑
j∈I0

ykyj 〈φ(xk), φ(xj)〉λj , ∀k ∈ I0.

As the solution of the adaptation task only depends on this restricted set of sampling
points, these are called the support vectors of the separating function resp. SVM.

6.3. Kernel Function. Using the solution of the adaptation task, as derived in
the previous section, both the computation of the Lagrange multipliers and the
evaluation of the separating function can be reduced to the knowledge of the kernel
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function K(x, y) = 〈φ(x), φ(y)〉,

S(w∗, x) =
∑
k∈I0

λkykK(xk, x)

1 =
∑
j∈I0

ykyj K(xk, xj)λj , ∀k ∈ I0.

For applications it is thus desirable to have a simple evaluation for this kernel
function on Rn × Rn that no longer involves the Hilbert space it was defined on.

The given examples have this property. No reduction is necessary in the case of
linear functions, while for the Gauss kernels one has

K(x, y) =

∫
Rn

exp

(
−‖z − x‖

2 + ‖z − y‖2

2σ2

)
= exp

(
‖x− y‖2

4σ2

)
σn
(∫

R
e−s

2

ds

)n
= (
√

2πσ)n exp

(
−‖x− y‖

2

4σ2

)
.

The separation function is a linear combination of radial basis functions where
the parameter σ determines the width of the basis function. This radius should be
considered relative to the geometric dimensions of the data set. Thus for very small
σ the classification sets S(w∗, x) ≥ 1 and S(w∗, x) ≤ −1 will consist of small circles
around the support vectors, which requires that almost all data points are support
vectors. With increasing σ the number of required support vectors reduces. Very
large values of σ will lead to numerical instabilities. The results seem robust for
values of σ in the range of the diameter of the data set.

In the case of the polynomial functions one can impose the additional condition
of rotational invariance which gives the kernel as a function of 〈x, y〉. One simple
expression of that form is

K(x, y) = (R2 + 〈x, y〉)d ,

which corresponds to the set of all multi-indices of total degree up to d. A higher
degree in principle increases the separability of the images of the data sets. The
parameter R again allows to scale the kernel function according to the geometric
extends of the data set. Both very small and very large values lead to ill-conditioned
matrices and numerical instabilities in the evaluation of the separation function.
Further, the workable range of medium sized values depends on the degree.

6.4. KKT System and Kojima Function. The resulting KKT system for the
full Lagrangian

L(w, λ) =
1

2
‖w‖2 +

N∑
k=1

λkgk(w), gk(w) ≤ 0 ,

with minimizer at w(λ) =
∑N
k=1 λkykφ(xk) leads to an LCP

−g(w(λ)) = Kλ− 11 ≥ 0

λ ≥ 0

λᵀ(−g(w(λ))) = λᵀ(Kλ− 11) = 0 ,
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or, equivalently, a Kojima system

0 = ∇f(w) +
∑
k

λ+
k ∇gk(w) = w −

∑
k

λ+
k ykφ(xk)

λ−k = gk(w) = 1−
∑
j

ykyj 〈φ(xk), φ(xj)〉λ+
j ,

where λ+
k = max(0, λk) = λk+|λk|

2 and λ−k = min(0, λk) = λk−|λk|
2 . After elimina-

tion of w this has the compact form

λ− = 11−Kλ+

⇐⇒ λ− |λ| = 2 · 11−K(λ+ |λ|)
⇐⇒ 2 · 11 = (I +K)λ− (I −K)|λ| ,

which is one inversion away from the form of an AVE, i.e.

z = b+A|z| with b = 2 ·(I+K)−111 and A = (I+K)−1(I−K) = −I+2(I+K)−1.

As K is at least positive semi-definite by construction, the spectrum of the sym-
metric matrix A is contained in (−1, 1). Additionally, K = (I − A)−1(I + A) is a
P-matrix. By the general theory of LCP this means that the solution of the system
exists and is unique (Theorem 2.1).

7. Experiments

The majority of this section will deal with the presentation of the performance
data of SG, FN and PN (without randomization) when applied to several instances
of the AVE-formulation of the XOR-problem. Before that we give a brief account
of how they cope with randomly generated data.

7.1. Randomly Generated Data. 500 tuples (A, b) of dimension 2.000 were gen-
erated uniformly at random and A was scaled by 1/(‖A‖∞+1/n) to achieve unique
solvability of the system. The results were rather encouraging.

(1) Signed Gaussian elimination: All systems were solved. We remark that
this is no surprise since, for random systems, the SG is a most likelihood
estimator for the signature of z (cf. [18]).

(2) Full step Newton: All systems were solved. The average number of iter-
ations, when started with Σ(b) as the initial signature, was approx. 3.
Moreover, the number of updated signs never exceeded 20 and was approx.
10 on average. Hence, the computational cost was virtually identical to
that of the SG. We remark though that this implies a practical advantage
of FN over SG, since a performant implementation of FN can be assembled
from refined building blocks, e.g. BLAS equation solvers or the matlab-
backslash, while SG requires an implementation from scratch.

(3) Piecewise Newton: All systems were solved. In terms of the number of
steps, the performance was virtually identical to that of FN.

With random data all three algorithms perform at eye level. However, the struc-
tured problems considered below will allow us to differentiate between them indeed.
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7.2. SVM-training-Problem. In this section we will test SG, FN and PN on two
instances of the XOR problem: The classical 2× 2 chessboard or XOR (eXclusive
OR) pattern as well as a pattern that is loosely shaped like the letter “T”. Both
have the property that the two sets can not be separated by a simple line. The
following experiments were performed:

• Gaussian and polynomial kernels were applied, the dimension of the poly-
nomial kernels was varied (denoted in the format DX, where ”X” is the
degree). The radius of both kernel types (as described in Section 6.4) was
varied as well (denoted in the format RX). The influence of the radius is
illustrated in the Figures 2 and 3 that have ”interesting” level sets resulting
from too small radii on the left and instances of practically useful discrim-
inator functions using few support vectors on the right.
• The iterative solvers, FN and PN, were started with two different best-guess

values: The signature of b (denoted below by FNΣ and PNΣ, resp.) and the
signature of the (possibly incorrect) solution of the signed Gaussian elimi-
nation (based on the hope that the SG might pick a significant number of
correct signs before diverging from the proper signature; FNSG and PNSG,
resp.). Convergent iterations were recorded in the format X(Y,Z), where
X denotes the number of iterations, Y the number of iterations where the
number of updated signs is larger n/3, i.e., where a full inversion is more
efficient than the SMW updates, and Z is the overall number of sign up-
dates during iteration steps with less than n/3 updated signs, i.e., steps
where SMW updates are more efficient than a full inversion.
• For each of the aforementioned system variations, both iterative solvers

were started with 100 random initial values. The probability of their con-
vergence was recorded.

We remark that for a proper implementation of the SMW-updates some sort of
singularity detection should be implemented to avoid numerical instabilities in case
of small denominators in (4.3).

7.2.1. Chessboard Pattern. The pattern XOR10 (four 10 × 10 squares arranged in
a chessboard-pattern) results in a system with dimension n = 400. Analogously,
the system corresponding to the XOR4 pattern has dimension n = 64.

XOR4
kernel Gauss polynomial
setting R2 R6 R6 D4 R6 D8
FN 1.0 1.0 0.0 1.0
PN 1.0 1.0 0.99 1.0

XOR10
kernel Gauss polynomial
setting R5 R15 R10 D5 R10 D8
FN 0.32 0.0 0.0 0.0
PN 1.0 1.0 0.96 0.97

Table 1. XOR4 and XOR10 pattern: probability of success with
randomly generated initial values.
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Figure 2. Plot for pattern XOR10 solved with Gaussian kernel
using radius 2 and 10 as in Table 1.

XOR4 R2 XOR4 R6 XOR10 R2 XOR10 R10
SG

√
-

√ √

FNΣ 1 (-,-) 12 (6,48) 1 (-,-) -
FNSG 1 (-,-) 2 (-,4) 1 (-,-) 1 (-,-)
PNΣ 1 (-,-) 57 (-,64) 1 (-,-) 282 (1,280)
PNSG 1 (-,-) 2 (-,4) 1 (-,-) 1 (-,-)

Table 2. XOR pattern with Gaussian kernel.

XOR4 R6 D4 XOR4 R6 D8 XOR10 R10 D5 XOR10 R10 D8
SG

√ √ √ √

FNΣ - 14 (6,51) - -
FNSG 1 (-,-) 1 (-,-) 1 (-,-) 1 (-,-)
PNΣ 78 (2,32) 45 (1,44) - 290 (1,294)
PNSG 1 (-,-) 1 (-,-) 1 (-,-) 1 (-,-)

Table 3. XOR patterns with polynomial kernel.

7.2.2. ”T”-Pattern. The ”T”-pattern has 65 data points and thus results in a sys-
tem of dimension n = 65.

kernel Gauss polynomial
setting R2 R6 R6 D5 R6 D8
FN 1.0 1.0 0.0 1.0
PN 1.0 1.0 0.97 1.0

Table 4. ”T”-pattern with 100 randomly generated initial values.
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Figure 3. Plot for ”T”-pattern solved with Gaussian kernel using
radius 2 and polynomial kernel of degree 5 using radius 6 as in
Table 4.

kernel Gauss polynomial
setting R2 R6 R6 D5 R6 D8
SG

√
- - -

FNΣ 1 (-,1) 13 (4,78) - 19 (6,67)
FNSG 1 (-,-) 12 (4,63) - 18 (5,72)
PNΣ 1 (-,1) 58 (-,58) 52 (2,79) 40 (2,45)
PNSG 1 (-,-) 5 (-,5) 40 (-,53) 17 (-,17)

Table 5. ”T”-pattern with Gaussian and polynomial kernels.

8. Observations and Final Remarks

SG is an interesting solver from a theoretical point of view due to its fixed cubic
cost which roughly equals that of solving a linear system with identical structure.
However, as the experiments on the ”T”-problem show, both FN and PN seem more
robust when confronted with problems that lack strong symmetries. Moreover, SG
has the significant practical drawback that an efficient implementation would have
to be written from scratch, which is a nontrivial problem in its own right, while
the other solvers can, in large parts, be assembled from mature implementations of
standard linear solvers.

If they converge and if the SMW-updates are used, FN and PN have, on average,
cubic costs as well due to the usually small number of sign updates per iteration
step. Of the two iterative solvers, PN is certainly more performant on the investi-
gated problems which were chosen to test out the solvers’ limitations. It deserves
mentioning though, that FN is highly performant for several well-known system
types such as the equilibrium- and (elitist) lasso-problems presented in [3] and [27],
respectively, while having the practical appeal of a very simple, straightforward-
implementable structure.

The randomized experiments, which either failed or succeeded completely, demon-
strate that the initial vector, at least with regard to the present examples, generally
does not influence the convergence, but only its speed. So, while the matrix con-
structed in Proposition 4.2 is generic, the resulting immunity of the system against
randomization may also appear in relevant practical problems.
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Finally, we remark that one rather favorable property of the investigated triad
of algorithms is that among the considered example problems there was not one
where neither of them provided a proper solution.
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