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Conservatism of the Circle Criterion -
Solution of a Problem posed by A. Megretski

Siegfried M. Rump

Abstract— In the collection of open problems in mathe-
matical systems and control theory [1] Alexandre Megretski
posed a problem from which it follows how conservative the
well-known circle criterion may be. We solve this problem.

Keywords— circle criterion, robust stabilization, Perron-
Frobenius

In [8] Alexandre Megretski posed a problem ! (Prob-
lem 30) with certain implications: in harmonic analysis
a connection between the time domain and frequency do-
main multiplications, in control theory the conservatism
of the circle criterion, the possiblility of robust stabiliza-
tion of a second-order uncertain system using a linear and
time-invariant controller, and the conjectured finiteness of
the gap between the minimum in some specially structured
non-convex quadratic optimization problem and its natural
relaxation (cf. [1, Problem 30]). Part 3 of the posed prob-
lem is as follows (omax denotes the largest singular value).

PROBLEM. Does there exist a finite constant v > 0 with
the following feature: for any cyclic n-by-n real matric

ho h hn—1
hn—l hO ce hn—2
H= . (1)
hi hy ... ho

such that omax(H) > 7y, there exists a non-zero real vector

x such that |y;| > |x;| for alli=0,1,...,n— 1 where
T Yo
T Y1
T = Y = . = Hzx.
Tn—1 Yn—1

As Megretski mentions, the solution of this problem implies
positive answers to the other two subproblems posed under
problem number 30 in [1]. We solve the problem in the
affirmative by giving narrow bounds for v depending on the
dimension of the matrix. We prove the following theorem.

Theorem 1: For any matrix H € R™*"™ of the form (1)
with

Omax(H) > (3+2V2)-n

there exists some nonzero x € R™ with

[(Hz),| > |z,| for1l<v<n. (2)

Furthermore, there exists a sequence of matrices H(,) €
R™"™ 1 <n €N, with

1The author wishes to thank P. Batra for pointing to this problem.
2Note indices run from 0 to n — 1.

Omax(H(n)) > 5n for n odd

N|—=

and

Omax(Hny) > %n for n even,

such that for all n € N there does not exist a nonzero
vector x € R™ with (2).

For the solution of Megretski’s problem we need the ex-
tension of classical Perron-Frobenius theory from nonnega-
tive to arbitrary real matrices [10]. This theory was devel-
oped to solve (cf. [11]) the conjecture that the component-
wise distance to the nearest singular matrix is proportional
to the reciprocal of its (componentwise) condition number
[3, p-18], [5, p.140].

For a real matrix A € R™*" define the real spectral radius
[9] to be

po(A) := max{|\| : A real eigenvalue of A}

and po(A) := 0 if A has no real eigenvalue. The set of
signature matrices is defined by

{S € R"™™" : S diagonal with |S;;| =1 for 1 <i < n}.

Throughout the paper we will use absolute value of vec-
tors and matrices and comparison of those componentwise.
Thus, for example, {D € R™*" : D diagonal with |D| < I}
consists of all diagonal matrices with —1 < D;; < 1 for
ie{l,...,n}.

The sign-real spectral radius [10] is defined by

pS(A) = max po(SA). (3)
|5|=I

It maximizes the real spectral radius when multiplying the
rows of A independently by 1. This quantity generalizes
many properties of the Perron root p(A) of nonnegative
matrices to general real matrices. Among the characteri-
zations we need are the following.

Theorem 2: For A € R™*" the following is true:
i) p3(A) = min{0 < r € R : det(rl — SA) > 0 for all
|S| =1TI}.
i) For 0 <r e R and det(rl — A) # 0 it is

p5(A) <r & (rI-A)7"'rI+A)eP,
where P denotes the class of matrices with all principal
minors positive.
max min

- S A —
i) pg (A) 0#£zER™ 1,40
iv) For 0 <r e R itis

(Az);

x;

p5(A)>r & F0#zeR":|Az| > rlz.
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The parts are proven in [10, Theorems 2.3, 2.13, 3.1]
and iv) is a consequence of 7). Part iv) gives a simple
way to compute lower bounds of p5 (A) for a given matrix
A; upper bounds are difficult, in fact NP-hard to calculate
[10, Theorem 3.5, Corollary 2.9].

The key to the solution of the PROBLEM are lower
bounds for p5 depending on the geometric mean of cycles.
Given a cycle pp = (p1,...,pk) C{L,...,n}1<|ul =k <
n, it is

|HAM|1/M = ‘AH1M2 T

Note that the diagonal elements of A form cycles of length
1.

Theorem 3: For A € R"*™ and a cycle u C {1,...,n} it
is

-A

A |1/k,

He—1MEk Mk 1

o5 (4) = (3+2v2) - [ A0,
Proof: [11, Theorem 4.4] ]
These results give the key to solve the PROBLEM. For
the solution we need some more notation. A matrix of type
(1) are is called circulant in matrix theory [6]. Denoting the

permutation matrix P € R™" with pijo = ... = pp_1p =
Pn1 = 1 it is
H = CiI‘C(ho, ey hn—l)
ho  hi hy ... hp_1
hn—l ho ]’Ll C hn_g
B S (4)
hi ho hs ...  hg

n—1
= > h,P”"eR™"™

v=0
Note that indices of h are running form 0 to n — 1. Cir-
culants have a number of interesting properties [2], among
them that circulants are normal, i.e. H = QAQ* for uni-
tary @ € C™*™ and diagonal A = diag(A1,...\,). The
eigenvalues of every circulant H can be ordered such that

1 1 1 1
1 w w? wnt
Q — n_1/2 . 1 wz w4 e w2(n71)
i wn.fl wz(’l’.Lfl) w(nfl')(nfl)

(5)

2mi/n - Hence for every circu-

diagonalizes H, where w = e
lant H,
Omax(H) = [[H||2 = |All2 = p(H) (6)

where p denotes the spectral radius.

With these preliminaries we can prove the first part of
Theorem 1. Given a circulant H asin (1) with | H||2 > (3+
21/2)n, it follows by Perron-Frobenius theory [12, Theorem
2.8]

B+2v2)n <|Hl|2 = p(H) < p(|H])
n—1
= <
V;““' " 0§y<r}f—1|hl'|

1606

The diagonals form cycles with geometric mean |h, |, and
by (7), max|h,| > 3 + 2v/2. Hence, Theorem 3 implies
p5(H) > 1, and Theorem 2, iv) proves the first part of
Theorem 1.

To prove the second part define

__ [eire(0,1,1,...,1,-1,-1,...,-1) for n odd
Hen = 1,1,..

circ(0,1,1,...,1,0,—1,—1,...,—1) for n even.

(8)

The first row of H(,) comprises of an equal number of

k := |(n —1)/2] components +1 and —1. The eigenval-
ues A\, (H) of a circulant H = circ(hg, ..., hp—1) € R
are [2]

n—1
Am(H) =" hyw™,  w =", (9)
v=0
with orthonormal eigenvector matrix @ as in (5). The ma-

trices H = H(,) as defined in (8) are skew-symmetric for
every n. Thus eigenvalues are purely imaginary and

[H]2

[

=
T

~—
[

for every n € N.
[n/2]
2-Im > w”
v=0

n/2
For even dimension n it is > w” =
v=0
w"™? = 0. For odd dimension we proceed similarly and a
computation yields

| Hlz = {

In any case one verifies

w21
w—1

= =2 hecause
w—1

for n even

for n odd.

2-cot
(14 cos T)cot = +sin -

| H |2 > 2- cot% > g for n > 4. (10)
To proceed further we need a slightly different upper bound
for p5 which can be proven using Theorem 2, i) and a
continuity argument. We choose to give a different (from
[10]) and simple proof of the following. A similar argument
has been used in [7].

Lemma 4: Let A € R™™ and 0 < r € R be given. If
rI— A is nonsingular and all minors of the Cayley transform

C=(rl —A)~rl + A)
are nonnegative, then p3(A4) < r.

Proof: With C € Py, the class of matrices with all
minors nonnegative, it is C- (I — D) € P, for every diagonal
D with 0 < D < I, and also C(I — D)+ D € Py (by
expanding the determinant, see also [4, Theorem 5.26]). It

1S
C(I-D)+D=(rI —A)~'(r[+A—2AD).

For D = %I and I — A being nonsingular it follows det(rI—
A)~! > 0, and using all possiblilities |D| = I it follows
det(rl — AS) = det(rI — SA) > 0 for all |S| = I. Theorem
2, 4) finishes the proof. |
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For n odd and k = (n—1)/2 the eigenvalues of H = H )
compute to

1— w(k—l)m

= ——— < < - .
T ot for0<m<n-1

Am (H)
Therefore, the eigenvalues of the Cayley transform (I —
H)™Y(I + H) are the roots of unity, and a computation
yields

(I-H)"'(I+H)=Q- diagw ¥V ey -Q* = P*

with P being the permutation matrix circ(0,1,0,...,0).
Because n is odd, every minor of P and of every power of
P is nonnegative. Thus Lemma 4 shows p3(H) < 1. By
|Hx| > |z| for = (1,1,0,...,0)T and Theorem 2, iv) it
follows p§ (H(n)) = 1 for n odd.

For n even things are a little more complicated. One can
show

1
C::(Ql—fn—%21+}n::écnsz,LLz,—U

where 2 is a row vector of § —1 zeros. Some more involved
computation shows that all minors of C' are nonnegative
and Lemma 4 implies p§ (H) < 2. For the signature matrix
S with diagonal element S,, = —1 for v € {1, 5 + 1}, and
+1 otherwise it is det(2] — SH) = 0, and by Theorem 2,

i) it follows p§ (H()) = 2 for n even. Summarizing

1 for n odd
s _
Po (Hin) = { 2 for n even. (11)
Replacing H(z,) by %H (2n) Produces matrices H with
p5 (H) =1 and omax(H) > 2 for n odd, and omax(H) > 2
for n even. This proves Theorem 1 for n > 4. A simple
computation shows that it also holds for n < 3. Theorem
1 is proved.

Finally we remark that

p5(A) = ||H| for a circulant H and n € {1,2,4}.

This is straightforward for n € {1,2} using the characteri-
zations given before, and for n = 4, H = circ(hg, h,
ha, hs) and using (9) one can show that

||| = p(H) = max ((m ~ ha) (o — h)),

|ho — h1 + ha — hs],

3
> T
v=0

Choosing suitable signature matrices S shows p§(H) =
p(H) = ||H]|. This implies
Corollary 5: For a circulant H € R™*" n € {1,2,4} it
is
|H||>1 < 30#xzeR":|Hz| > |z|
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