
Error bounds for extremely ill-conditioned problems

Siegfried M. Rump

Institute for Reliable Computing, Hamburg University of Technology,
Schwarzenbergstraße 95, Hamburg 21071, Germany

and Waseda University, Faculty of Science and Engineering,
2-4-12 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan.

email: rump@tu-harburg.de.

Abstract— We discuss methods to compute error
bounds for extremely ill-conditioned problems. As a
model problem we treat matrix inversion. We demon-
strate that additive corrections to improve an approx-
imate inverse are useful for ill-conditioned problems,
but hardly usable for extremely ill-conditioned prob-
lems. Here multiplicative corrections can be used, in-
cluding the possibility to compute guaranteed error
bounds.

1. Introduction

Let us consider the inversion of a real n×n matrix as a
model problem. This can be interpreted as a function
from IRn2

to IRn2
, which is continuous and differen-

tiable on the set of n2-vectors which, interpreted as an
n × n matrix A, are nonsingular. Suppose A is non-
singular. The problem of matrix inversion is called
ill-conditioned when small changes in the input data
A cause large changes in the solution. If A is a ma-
trix of floating point numbers and changes in the unit
of the last place of the input data A cause a relative
change in the solution of the order of 100 %, then the
problem is extremely ill-conditioned. It is common be-
lief that such problems cannot be solved in the same
floating point format as the input data is stored. This
fact is supported by the well known relation

forward error = condition× backward error . (1)

Suppose the floating point format in use is IEEE 754
double precision corresponding to 53 bits in the man-
tissa. Then this means that the solution of problems

In Proceedings of 2006 International Symposium on Non-

linear Theory and its Applications, Bologna, Italy, September

11-14, 2006

with condition number 253 ≈ 1016 or above cannot be
reasonably approximated in double precision. How-
ever, there are exceptions to that statement, namely,
if, for some reason, intermediate operations can be per-
formed exactly without rounding error, for instance
in integer computations. A very interesting example
are so-called error-free transformations. Here pairs of
floating point numbers are transformed into pairs of
floating point numbers without error. Consider the
following algorithm by Knuth, 1969 [2]:

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

This algorithm satisfies the following property.

Theorem 1 Given two floating point numbers a, b ∈
IF, the result (x, y) of TwoSum satisfies

x = fl(a + b) and x + y = a + b.

Note that this statement is also true in the presence
of underflow. Using TwoSum we can present the fol-
lowing algorithm for vector transformation.

function p = VecTransform(p)
for i = 2 : n %length(p) = n

[pi, pi−1] = TwoSum(pi, pi−1)

Note that we use the same variable p for input and out-
put. One sees immediately by induction that the value
of the sum s :=

∑
pi is not changed by VecTransform.

For such an algorithm the relation (1) cannot hold
since all intermediate transformations are exact. One
can show [3] that the condition number of

∑
pi drops



basically by a factor 2−53 with each application of
VecTransform. After sufficiently many transforma-
tions, fl(

∑
pi) will be a very accurate approximation

of the exact sum s. Such algorithms are presented in
[3] and [6].

The following ingenious method by Dekker splits a 53-
bit floating point number a ∈ IF into two 26-bit parts.

function [x, y] = Split(a)
c = fl(factor · a) %factor = 227 + 1
x = fl(c− (c− a))
y = fl(a− x)

The result of this algorithm satisfies x + y = a such
that the results x, y do have not more that 26 signifi-
cant bits. The trick is that the sign bit of x or y is used
for the representation. The function Split is used to
transform the product of two floating point numbers
into the sum of two floating point numbers, again an
error-free transformation. This is done by the follow-
ing algorithm TwoProduct.

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x− a1 · b1)− a2 · b1)− a1 · b2))

The mathematical property

x + y = a · b

is true for all a, b ∈ IF as long as no over- or underflow
occurs. With this the dot product of two n-vectors can
be transformed into the sum of an 2n-vector, which in
turn can be summed up with the methods described.

Therefore we can calculate accurate approximations of
the

∑
(pi) and xT y for n-vectors p, x, y. Note that the

mentioned algorithms use only ordinary floating point
addition and multiplication. The algorithms proved to
be very fast [3, 6].

Let a matrix A ∈ IFn×n be given. One may ask
whether it is possible to compute an accurate approx-
imation of the inverse of A using accurate summation
and dot product.

2. Additive corrections

Let R be an approximate inverse of A, for example
computed by the Matlab command inv(A). The obvi-
ous choice of iterative improvement of R is a Newton
iteration. This method is known as Schulz iteration in
the literature [7]. The first step of the iteration is as
follows.

X := R

X := X − (X ·A− I) ·X (2)

Here I denotes the n × n identity matrix. Consider
as a model problem a randomly generated 100 × 100
matrix of condition number 1010. We used randsvd as
described in [1, Chapter 28]. In double precision with
relative rounding error unit u = 2−53 we can expect
log2(u−1/1010) ∼ 6 correct digits of the solution. We
check the accuracy by means of the residual ‖I−R·A‖.
We also check the right residual and obtain

‖I −R ·A‖ = 9.93 · 10−7 and
‖I −A ·R‖ = 7.87 · 10−6.

(3)

We display the result for one typical example. Note
that we used high precision to calculate the residuals,
so we can expect them to be correct. As expected the
left residual is slightly better since the Matlab routine
inv computes a left inverse of A. Next we perform one
iteration (2) in double precision. We obtain

‖I −X ·A‖ = 6.30 · 10−7 and
‖I −A ·X‖ = 1.54 · 10+2.

(4)

First, the residual I−X ·A in (2) is computed in double
precision. This computation is always ill-conditioned,
also for well-conditioned matrices, so we cannot expect
a significant improvement. The left residual improves
slightly, whereas the quality of X as a right inverse
deteriorates completely. This is because the residual
in (2) is written for a left inverse. The corresponding
iteration for the right inverse

X := R

X := X −X · (A ·X − I)
(5)

yields

‖I −X ·A‖ = 1.40 · 10+2 and
‖I −A ·X‖ = 8.06 · 10−7.

(6)

as expected. We mention that one iteration (2) or (5)
with quadruple precision residual yields

‖X −A−1‖/‖A−1‖ ≈ 10−13



as expected. However, the quality of the iteration ma-
trix I − XA or I − AX does not improve. Next we
concentrate on the left inverse and compute the resid-
ual I − X · A in quadruple precision. By a common
rule of thumb we may expect an improvement of the
relative accuracy of the result by cond ·u ∼ 10−6. We
denote this by

X := R

X := X − double(quad(X ·A− I)) ·X.
(7)

Here quad(·) indicates that the whole expression in-
side the parentheses is computed in quadruple preci-
sion, and double(·) means to round it back into double
precision. The result is as follows.

‖I −X ·A‖ = 1.64 · 10−7 and
‖I −A ·X‖ = 2.06 · 10−7.

(8)

Interestingly, now the right residual is of the same
quality as the right residual, however, almost no im-
provement is visible. The next step is to perform the
multiplication by X in quadruple as well.

X := R

X := X − double(quad(X ·A− I) ·X).
(9)

Now the entire correction (X · A − I) ·X is executed
in quadruple, rounded to double and the added to X.
The result is as follows.

‖I −X ·A‖ = 2.41 · 10−7 and
‖I −A ·X‖ = 3.09 · 10−7.

(10)

Again we see no improvement. Finally, we may exe-
cute the whole computation of X in (2) in quadruple
precision and round the result to double precision:

X := R

X := double(quad(X − (X ·A− I) ·X)).
(11)

The result is as follows.

‖I −X ·A‖ = 2.09 · 10−7 and
‖I −A ·X‖ = 2.96 · 10−7.

(12)

Strange enough the Newton iteration does not improve
the result at all although all computations have been
performed in quadruple precision and only the final
result is rounded into double precision. Finally, we use
the nearest floating point matrix to the exact inverse
A−1, the latter computed by some multiple precision
routine, that is

X := double(A−1). (13)

Then the left and right residuals are

‖I −X ·A‖ = 2.26 · 10−7 and
‖I −A ·X‖ = 3.60 · 10−7.

(14)

So there seems not much chance to decrease the left
or right residual using a double precision matrix X
as preconditioner. However, a residual iteration us-
ing R needs the residual matrix to be convergent. For
extremely ill-conditioned matrices a double precision
X seems unsufficient. A remedy is to store X in two
parts. This was already used in [5] and was later called
staggered correction. One method is to store the orig-
inal X and the correction into two different parts.

X := R

X1 := X,

X2 := double(quad(X ·A− I)) ·X.

(15)

Note that only the residual is computed in quadruple
precision and rounded into double, the multiplication
by X is in double precision. Now the result is as fol-
lows.

‖I − (X1 + X2) ·A‖ = 1.18 · 10−13 and
‖I −A · (X1 + X2)‖ = 1.17 · 10−12.

(16)

As expected, the improvement is of the order u ·
cond (A) ≈ 10−6. As a result we see that for ill-
conditioned problems the preconditioner R still con-
tains enough information to produce small residuals,
but only if the new preconditioner is stored in multi-
ple precision. For extremely ill conditioned problems,
however, things change again. Let A be a 100 × 100
matrix with condition number 1015. This is at the
limit of what can be solved in double precision. Then
(15) with R = inv(A) yields

‖I − (X1 + X2) ·A‖ = 4.09 · 10+4 and
‖I −A · (X1 + X2)‖ = 8.87 · 10+5,

(17)

so no information at all. Also with the exact inverse
by (13) all information is gone:

‖I −X ·A‖ = 3.87 · 10+4 and
‖I −A ·X‖ = 4.27 · 10+5.

(18)

The reason is that the initial approximation X, an
approximate inverse of A, is so far from the true result
A−1 that an additive correction does not work.



3. Multiplicative corrections

For a multiplicative correction we use the fact that an
approximate inverse still contains a lot of structure.
It does not contain adequate information to solve the
residual equation directly, however, it may serve as a
preconditioner. For a 100× 100 matrix A with condi-
tion number 1021 we use multiple precision arithmetic
to compute cond (A), X := R ·A and cond (X), where
R is the approximate inverse of A by R := inv(A).

cond (A) = 3.92 · 1021 and
cond (X) = 2.69 · 107.

(19)

It is a general observation that for an arbitrarily ill-
conditioned matrix A we can compute an approximate
inverse R := inv(A) in double precision such that
the condition number of the preconditioned matrix
X := R · A drops by roughly a factor u. The product
R · A is computed using algorithms presented in [3]
or [6]. This corresponds to a result as if computed in
quadruple precision and then rounded to double preci-
sion or, with faithful rounding, respectively. The drop-
ping of the condition number is also observed when
computing R ·A only in double precision.

These observations were used in about 1984, when
we derived a method for inverting arbitrarily ill-
conditioned matrices. This method, which we never
published, requires the possibility to calculate a dot
product xT y in k-fold precision and store into working
precision as in [3] or [6]. The first step of the method
is as follows.

function [X1, X2] = AccInv(A)
R = inv(A) % double precision
P = inv(double(quad(R ·A)))
X1 + X2 = quad(P ·R)

As we have seen before we need higher precision for a
preconditioner to produce a small residual. The last
line in our algorithm computes the product P · R in
quadruple precision and stores the result in two double
precision parts X1, X2. This produces

‖I − (X1 + X2) ·A‖ = 3.17 · 10−9 and
‖I −A · (X1 + X2)‖ = 2.03 · 10+7.

(20)

The left residual is small enough to produce a con-
verge iteration, for example, for solving a system of
linear equations. The right residual is large since P is

computed using R as a left preconditioner. Calculat-
ing P as an approximate inverse of A · R and X by
R · P yields

‖I − (X1 + X2) ·A‖ = 2.02 · 10+8 and
‖I −A · (X1 + X2)‖ = 3.56 · 10−5,

(21)

as expected. The presented algorithm AccInv is the
first step of an iterated algorithm, the latter being able
to compute an approximate inverse of an arbitrarily ill-
conditioned matrix in double precision floating point.
It uses only the basic operations in double and an ac-
curate dot product as presented in [3] or [6]. Very
recently a partial analysis of this algorithm was pre-
sented in [4]. It is still quite mysterious how purely
double precision computation can invert arbitrarily ill-
conditioned matrices, and a full analysis is still open.

References

[1] N.J. Higham. Accuracy and Stability of Numerical
Algorithms. SIAM Publications, Philadelphia, 2nd
edition, 2002.

[2] D.E. Knuth. The Art of Computer Programming:
Seminumerical Algorithms, volume 2. Addison
Wesley, Reading, Massachusetts, 1969.

[3] T. Ogita, S.M. Rump, and S. Oishi. Accurate
Sum and Dot Product. SIAM Journal on Scientific
Computing (SISC), 26(6):1955–1988, 2005.

[4] S. Oishi, K. Tanabe, T. Ogita, and S.M. Rump.
Convergence of Rump’s Method for Inverting Arbi-
trarily Ill-Conditioned Matrices. accepted for pub-
lication in JCAM, 2006.

[5] S.M. Rump. Kleine Fehlerschranken bei Matrix-
problemen. PhD thesis, Universität Karlsruhe,
1980.

[6] S.M. Rump, T. Ogita, and S. Oishi. Accurate
Floating-Point Summation. Technical Report 05.1,
Faculty of Information and Communication Sci-
ence, Hamburg University of Technology, 2005.

[7] G. Schulz. Iterative Berechnung der reziproken
Matrix. Zeitschrift für Angewandte Mathematik
und Mechanik (ZAMM), 13:57–59, 1933.


