
accepted for publication in BIT, May 18, 2011.

ERROR ESTIMATION OF FLOATING-POINT SUMMATION AND DOT PRODUCT

SIEGFRIED M. RUMP ∗

Abstract. We improve the well-known Wilkinson-type estimates for the error of standard floating-point recursive summa-

tion and dot product by up to a factor 2. The bounds are valid when computed in rounding to nearest, no higher order terms

are necessary, and they are best possible. For summation there is no restriction on the number of summands. The proofs are

short by using a new tool for the estimation of errors in floating-point computations, namely the “unit in the first place (ufp)”,

which cures drawbacks of the often-used “unit in the last place (ulp)”. The presented estimates are nice and simple, and closer

to what one may expect.

Key words. floating-point summation, rounding, dot product, unit in the first place (ufp), unit in the last place (ulp),

error analysis, error bounds

AMS subject classifications. 15-04, 65G99, 65-04

1. Goal of the paper. Let F denote a set of binary floating-point numbers according to the IEEE 754

floating-point standard [4, 5]. Throughout the paper we assume that no overflow occurs, but allow underflow.

Denote by float(·) the evaluation of an expression in floating-point arithmetic.

The aim of the paper is as follows. The error of floating-point summation or dot product is usually estimated

by the sum and product of absolute values, respectively. For example, for p ∈ Fn typically [3]

∆ := |float(
∑

pi)−
∑

pi| ≤ γn−1

∑
|pi| provided nu < 1(1.1)

is used, where γk := ku/(1 − ku) for the relative rounding error unit u. So the error of the approximation

s̃ := float(
∑

pi) ∈ F of the true sum
∑

pi ∈ R is estimated using E :=
∑

|pi|. This standard Wilkinson-type

estimate depends on the unknown quantity E, whereas in practice only Ẽ := float(
∑

|pi|) is available. It is
well-known how to close this gap (see (3.3)), however, then the formula becomes even more unwieldy.

It seems desirable to improve this in several ways, namely to develop an estimate using the known quantity

Ẽ with a straight dependence on n and u, to lift the restriction on n, the estimate should be computable

and, if possible, should be sharp. We will show

∆ ≤ (n− 1)uẼ and even ∆ ≤ (n− 1)u · ufp(Ẽ) ,(1.2)

where ufp(Ẽ), the “unit in the first place”, denotes the largest power of 2 not larger than Ẽ. We show that

the estimates are sharp, i.e. for the given information s̃ and Ẽ they are not improvable, and (1.2) is valid for

all n. It is shown how to compute the unit in the first place in four floating-point operations in rounding to

nearest.

Furthermore, the second estimate in (1.2) is still valid when evaluated in floating-point arithmetic if nu ≤ 1

(otherwise n need not be a floating-point number). Almost similar results are presented for dot products.

∗Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraße 95, Hamburg 21071, Germany,

and Visiting Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555,

Japan (rump@tu-harburg.de). Part of this research was done while being visiting Professor at Université Pierre et Marie Curie

(Paris 6), Laboratoire LIP6, Département Calcul Scientifique, 4 place Jussieu, 75252 Paris cedex 05, France.

1

2 S. M. RUMP

Fig. 2.1. Normalized floating-point number: unit in the first place and unit in the last place

2. Notation. The relative rounding error unit, the distance from 1.0 to the next smaller1 floating-

point number, is denoted by u, and the underflow unit by eta, that is the smallest positive (subnormal)

floating-point number. For IEEE 754 double precision (binary64) we have u = 2−53 and eta = 2−1074.

We denote by fl : R → F a rounding to nearest, that is

x ∈ R : |fl(x)− x| = min{|f − x| : f ∈ F} .(2.1)

Any rounding of the tie can be used without jeopardizing the following estimates, only (2.1) must hold

true. This implies that for rounding downwards or upwards or towards zero, all bounds are true mutatis

mutandis using 2u instead of u. This may be particularly useful for cell processors [6, 7]. For a, b ∈ F
and ◦ ∈ {+,−, ·, /}, the IEEE 754 floating-point standard defines fl(a ◦ b) ∈ F to be the floating-point

approximation of a ◦ b ∈ R.

The standard error estimate (see, e.g., [3]) for floating-point addition and subtraction is

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2) for a, b ∈ F, ◦ ∈ {+,−} and |ε1|, |ε2| ≤ u .(2.2)

Note that addition and subtraction is exact near underflow [2], so no underflow unit is necessary in (2.2).

More precisely,

a, b ∈ F : |fl(a± b)| < u−1eta ⇒ fl(a± b) = a± b .(2.3)

For multiplication and division care is necessary for results in the underflow range:

fl(a ◦ b) = (a ◦ b)(1 + ε) + η for a, b ∈ F, ◦ ∈ {·, /} and |ε| ≤ u, |η| ≤ eta/2, εη = 0 .(2.4)

For our purposes we need sharper error estimates. In numerical error analysis the “unit in the last place

(ulp)” is often used. This concept has several drawbacks: it depends on the floating-point format, extra care

is necessary in the underflow range, and it does not apply to real numbers. For example,

ulp(s1) = 2−23 for s1 = 1 in IEEE 754 single precision (binary32),

ulp(d1) = 2−52 for d1 = 1 in IEEE 754 double precision (binary64),

ulp(u) = 2−149 for any u ∈ F with 2−149 ≤ |u| < 2−125 in IEEE 754 single precision (binary32),

and ulp(π) is not defined at all.

Therefore I introduced in [10] the “unit in the first place (ufp)” or leading binary bit of a real number, which

is defined by

0 ̸= r ∈ R ⇒ ufp(r) := 2⌊log2 |r|⌋ ,(2.5)

where ufp(0) := 0. This concept is independent of a floating point format or underflow range, and it applies

to real numbers. It gives a convenient way to characterize the bits of a normalized floating-point number

f : they range between the leading bit ufp(f) and the unit in the last place 2u · ufp(f). In particular

f ∈ 2u · ufp(f)Z and F ⊂ etaZ, also in underflow. This interpretation of floating-point numbers as scaled

integers turns out to be very useful. The situation is depicted in Figure 2.1.

1Note that sometimes the distance from 1.0 to the next larger floating-point number is used; for example, Matlab adopts

this rule.

ERROR ESTIMATION OF FLOATING-POINT SUMMATION AND DOT PRODUCT 3

Many interesting properties of ufp(·) are given in [10] without which certain delicate estimations of errors

in floating-point computations had not been possible. We need in the following only a few properties which

are easily verified.

0 ̸= x ∈ R : ufp(x) ≤ |x| < 2ufp(x)(2.6)

x ∈ R, f ∈ F : |x− f | < u · ufp(x) ⇒ fl(x) = f(2.7)

r ∈ R ⇒ ufp(r) ≤ ufp(fl(r)) .(2.8)

When rounding x ∈ R into f := fl(x) ∈ F, the error is sharply characterized by

f = x+ δ + η with |δ| ≤ u · ufp(x) ≤ u · ufp(f) ≤ u|f |, |η| ≤ eta/2, δη = 0 .(2.9)

This implies in particular for floating-point addition and multiplication

f = fl(a+ b) ⇒ f = a+ b+ δ with |δ| ≤ u · ufp(a+ b) ≤ u · ufp(f) ,(2.10)

f = fl(a · b) ⇒ f = a · b+ δ + η with |δ| ≤ u · ufp(a · b) ≤ u · ufp(f), |η| ≤ eta/2 ,(2.11)

where δη = 0 in the latter case.

The improvement by the ufp-concept in (2.9) over the classical bounds (2.2) and (2.4) is up to a factor 2.

For example, δ := |fl(3/100) − 3/100| ≤ (3/100)u = 3.33 · 10−18 by (2.4) compared to δ ≤ ufp(3/100)u =

1.73 · 10−18 by (2.9) in IEEE 754 double precision.

3. Summation. In this section let n floating-point numbers pi ∈ F be given. The standard recursive

summation computes an approximation of the exact sum s :=
∑n

i=1 pi as follows.

Algorithm 3.1. Recursive summation of a vector pi of floating-point numbers.

s̃1 = p1

for k = 2 : n

sk = s̃k−1 + pk

s̃k = fl(sk)

For nu ≤ 1, the computed approximation s̃n satisfies the well-known error estimate (cf. [3], Lemma 8.4)

|s̃n −
n∑

i=1

pi| ≤ γn−1

n∑
i=1

|pi| with γk :=
ku

1− ku
,(3.1)

which follows by recursively applying (2.2). The quantity γn−1 takes care of accumulated rounding errors.

Although this is a mathematically clean principle, it lacks computational simplicity.

As has been noted by one of the anonymous referees, under the stronger assumption nu ≤ 0.01 the right

hand side in (3.1) can be replaced by 1.01(n − 1)u
∑n

i=1 |pi| (cf. [3], page 68). Although this avoids O(u2)

terms, it uses the typical Wilkinson-style 1.01-factor, which was avoided by the γk-notation.

To receive a computable estimation, it gets even worse:

Algorithm 3.2. Recursive summation with error bound estimation.

s̃1 = p1; S̃1 = |p1|

for k = 2 : n

sk = s̃k−1 + pk; s̃k = fl(sk)

Sk = S̃k−1 + |pk|; S̃k = fl(Sk)

4 S. M. RUMP

The estimate (3.1) can be applied to the floating-point summation of absolute values as well because |F| =
−|F| implies that taking an absolute value does not cause a rounding error. So abbreviating S :=

∑n
i=1 |pi|

and applying (3.1) to
∑

|pi| yields

|s̃n −
n∑

i=1

pi| ≤ γn−1S ≤ γn−1

[
|S̃n|+ |S̃n − S|

]
≤ γn−1

[
|S̃n|+ γn−1S

]
,(3.2)

so that

(1− γn−1)S ≤ |S̃n| .

The monotonicity of floating-point operations and 0 ∈ F gives |S̃n| = S̃n, so that for 2(n − 1)u < 1 a little

computation proves

|s̃n −
n∑

i=1

pi| ≤
(n− 1)u

1− 2(n− 1)u
S̃n .(3.3)

In order to arrive at a computable floating-point number bounding the error, extra care is necessary when

evaluating the right hand side of (3.3).

The classical bound (3.1) can be freed from the nasty O(u2) term. To show this we need the following

auxiliary lemma. Although the result is obvious after drawing a picture and a little thinking, note the

simplicity and beauty of the proof using the ufp-concept.

Lemma 3.3. Let a, b ∈ F. Then

|fl(a+ b)− (a+ b)| ≤ |b| .(3.4)

Proof. If |(a+ b)− a| < u · ufp(a+ b), then (2.7) implies fl(a+ b) = a and therefore (3.4). If fl(a+ b) ̸= a,

then (2.10) yields

|b| = |(a+ b)− a| ≥ u · ufp(a+ b) ≥ |fl(a+ b)− (a+ b)| . �

Theorem 3.4. Let pi ∈ F for 1 ≤ i ≤ n, and let s̃n be the quantity computed by recursive summation as in

Algorithm 3.1. Then

| s̃n −
n∑

i=1

pi | ≤ (n− 1)u
n∑

i=1

|pi| .(3.5)

Remark 1. Note that in contrast to (3.1) there is no restriction on n, whereas the classical bound (3.1)

becomes very weak for nu close to 1.

Proof. Proceeding by induction we note

∆ := | s̃n −
n∑

i=1

pi | = |s̃n − sn + s̃n−1 −
n−1∑
i=1

pi| ≤ |s̃n − sn|+ (n− 2)u
n−1∑
i=1

|pi| .(3.6)

We distinguish two cases. First, assume |pn| ≤ u
∑n−1

i=1 |pi|. Then Lemma 3.3 implies

|s̃n − sn| = |fl(s̃n−1 + pn)− (s̃n−1 + pn)| ≤ |pn| ≤ u

n−1∑
i=1

|pi| ,(3.7)

ERROR ESTIMATION OF FLOATING-POINT SUMMATION AND DOT PRODUCT 5

and inserting into (3.6) finishes this part of the proof. Henceforth, assume u
∑n−1

i=1 |pi| < |pn|. Then (2.9)

and (2.6) give

|s̃n − sn| ≤ u|sn| = u|s̃n−1 −
n−1∑
i=1

pi +
n∑

i=1

pi| ,

so that (3.6) and the induction hypothesis yield

∆ ≤ u
[
(n− 2)u

∑n−1
i=1 |pi|+

∑n
i=1 |pi|

]
+ (n− 2)u

∑n−1
i=1 |pi|

< u
[
(n− 2)|pn|+ |pn|+

∑n−1
i=1 |pi|

]
+ (n− 2)u

∑n−1
i=1 |pi|

= (n− 1)u
∑n

i=1 |pi| .

The proof is finished. �

Remark 2. The estimate (3.5) is almost sharp as for p1 = 1 and pi = u for 2 ≤ i ≤ n. There are obvious

possibilities to improve it, in particular pn does not occur in (3.7); however, this would sacrifice its simplicity.

For a computable bound, we may proceed as in (3.2). For S̃ denoting a floating-point approximation of∑
|pi| computed by Algorithm 3.1 in any order of summation, Theorem 3.4 yields

|s̃n −
n∑

i=1

pi| ≤ (n− 1)u · S ≤ (n− 1)u
[
S̃ + (n− 1)u · S

]
,

and therefore

|s̃n −
n∑

i=1

pi| ≤ γn−1S̃ .(3.8)

However, this estimate still contains the unwieldy O(u2) term.

To arrive at an easily computable and nice bound, we analyze Algorithm 3.2 further. We will use a mono-

tonicity property of a rounding defined by (2.1), namely

|x| ≤ X and |y| ≤ Y ⇒ |fl(x+ y)| ≤ fl(X + Y) for x, y,X, Y ∈ R ,(3.9)

so that

|s̃k| ≤ S̃k for 1 ≤ k ≤ n(3.10)

for the quantities computed by Algorithm 3.2.

Theorem 3.5. Let pi ∈ F for 1 ≤ i ≤ n, and let s̃n and S̃n be the quantities computed by recursive

summation as in Algorithm 3.2. Then

| s̃n −
n∑

i=1

pi | ≤ (n− 1)u · ufp(S̃n)
[

≤ (n− 1)uS̃n

]
.(3.11)

The estimation is sharp for all n.

Remark 3. As for the previous theorem we note that there is no restriction on n. Note that for the given

data, namely the floating-point approximations s̃n and S̃n, the estimate is best possible for all n.

Proof. We use (2.9) and (3.10) to see

|s̃k − sk| ≤ u · ufp(s̃k) ≤ u · ufp(S̃k)

for 2 ≤ k ≤ n, so that by induction

| s̃k −
∑k

i=1 pi | = | s̃k − sk + s̃k−1 −
∑k−1

i=1 pi |

≤ u · ufp(S̃k) + (k − 2)u · ufp(S̃k−1)

≤ (k − 1)u · ufp(S̃k) .

6 S. M. RUMP

This proves (3.11). Setting p1 := 1 and pi := u for 2 ≤ i ≤ n we obtain in IEEE 754 rounding tie to even

fl(1 + u) = 1, so that s̃n = 1 = S̃n. Hence | s̃n −
∑n

i=1 pi | = (n− 1)u = (n− 1)u · ufp(S̃n). This completes

the proof. �

The bound in (3.11), unlike (3.3) and (3.8), is only valid when both s̃n and S̃n are computed in the same

order of summation. Concerning a practical application of (3.11), the unit in the first place can be computed

with 4 floating-point operations. Algorithm 3.5 in [9], which we repeat for convenience, improves an earlier

version by the author by avoiding branches. It works correct in the underflow range but causes overflow for

input very close to the largest representable floating-point number. The latter case is cured by scaling.

Algorithm 3.6. Unit in the first place of a floating-point number.

function S = ufp(p)

q = fl(φp) for φ := (2u)−1 + 1

S = fl(|q − (1− u)q|)

In combination with Theorem 3.4 this allows an easy computation of a rigorous error bound for floating-point

summation, whereas a rigorous bound based on (3.3) or (3.8) in rounding to nearest is unwieldy.

Corollary 3.7. Let pi ∈ F for 1 ≤ i ≤ n, assume nu ≤ 1, and let s̃n, S̃n and r := ufp(S̃n) be the quantities

computed by Algorithms 3.2 and 3.6. Then

| s̃n −
n∑

i=1

pi | ≤ fl
(
(n− 1) · fl(u · r)

)
.(3.12)

The estimation is sharp for all n ≤ u−1.

Remark 4. Note that n is not necessarily a floating-point number for n > u−1. It is straightforward (though

of small practical interest) to derive a computable upper bound for arbitrary values of n.

Proof. Denote the floating-bound in (3.12) by R̃. If S̃n < u−1eta, then (3.10) and (2.3) imply that there

is no rounding error at all in the summations producing s̃n and S̃n, i.e. s̃n =
∑

pi. In rounding tie to even

also fl(u · ufp(S̃n)) = fl(eta/2) = 0 = R̃.

Otherwise, since ufp(S̃n) is a power of 2, ufp(S̃n) ≥ u−1eta implies that for n not larger than u−1 no

rounding error occurs in the computation of R̃, so Theorem 3.5 finishes the proof. �

Remark 5. One might be inclined to improve Theorem 3.4 along the lines of Theorem 3.5 into

| s̃n −
n∑

i=1

pi | ≤ (n− 1)u · ufp(
n∑

i=1

|pi|) .

However, this is not true as by

p1...5 := [1− 5u ,
u

2
,
3

2
u ,

3

2
u , u(1 + 2u)] .

First note that pi ∈ F. Second, S̃2...5 = s̃2...5 = 1 + u · [−4,−2, 0, 2] and s :=
∑

pi = 1− u
2 + 2u2. Hence

| s̃n −
n∑

i=1

pi | = |s̃5 − s| = |(1 + 2u)− (1− u

2
+ 2u2) =

5

2
u− 2u2 ,

but

(n− 1)u · ufp(
n∑

i=1

|pi|) = 4u · ufp(1− u

2
+ 2u2) = 2u <

5

2
u− 2u2 .

ERROR ESTIMATION OF FLOATING-POINT SUMMATION AND DOT PRODUCT 7

4. Dot product. In this section let 2n floating-point numbers xi, yi ∈ F, 1 ≤ i ≤ n be given. The

standard recursive routine computes an approximation of the exact dot product xT y as follows.

Algorithm 4.1. Dot product of two vectors x = (x1, . . . , xn)
T , y = (y1, . . . , yn)

T of floating-point numbers.

p̃1 = fl(x1 · y1); s̃1 = p̃1

for k = 2 : n

pk = xk · yk; p̃k = fl(pk)

sk = s̃k−1 + p̃k

s̃k = fl(sk)

If no underflow occurs and nu < 1, the computed approximation s̃n satisfies the well-known error estimate

(cf. [3], Chapter 3, p. 63)

|s̃n − xT y| ≤ γn|xT ||y| ,(4.1)

where the absolute value of vectors is taken entrywise. As in the remark following (3.1) the right hand side

may be replaced by 1.01nu|xT ||y| under the stronger assumption nu ≤ 0.01. Next we extend Algorithm 4.1

to obtain a computable error estimate including underflow.

Algorithm 4.2. Dot product of two vectors x, y ∈ Fn with error bound estimate.

p̃1 = fl(x1 · y1); s̃1 = p̃1; S̃1 = |p̃1|

for k = 2 : n

pk = xkyk; p̃k = fl(pk)

sk = s̃k−1 + p̃k; s̃k = fl(sk)

Sk = S̃k−1 + |p̃k|; S̃k = fl(Sk)

Using the results of the previous section we derive the following computable error estimate for the floating-

point approximation s̃n computed by Algorithm 4.2 to the exact dot product xT y.

Theorem 4.3. Let x, y ∈ Fn with (n+ 2)u ≤ 1, and let s̃n and S̃n be the quantities computed by Algorithm

4.2. Denote by realmin := 1
2u

−1eta the smallest positive normalized floating-point number. Then

| s̃n − xT y | < (n+ 2)u · ufp(S̃n) + neta/2 < (n+ 2)u · ufp(S̃n) + realmin .(4.2)

The factor n+ 2 cannot be replaced by n+ 1.

Remark 6. It is not possible to avoid some additive term covering underflow in (4.2) since all |xiyi| may

be so small that s̃n = S̃n = 0 but xT y ̸= 0.

Remark 7. Floating-point operations with quantities in the underflow range (such as neta/2) are often very

time consuming, so that for computational purposes the underflow terms are better estimated by realmin

rather than neta/2. Moreover, this quantity is negligible in most cases anyway.

Proof. Applying Theorem 3.5 to the vector (|p̃1|, . . . , |p̃n|)T ∈ Fn and using nu ≤ 1 gives

| S̃n −
n∑

i=1

|p̃i| | ≤ (n− 1)u · ufp(S̃n) < ufp(S̃n) ,(4.3)

and again applying it to p̃i shows

| s̃n − xT y | = | s̃n −
n∑

i=1

pi | ≤ (n− 1)u · ufp(S̃n) + |
n∑

i=1

(p̃i − pi) | .(4.4)

8 S. M. RUMP

Next (2.9) yields

|p̃i − pi| = |fl(pi)− pi| ≤ u · |p̃i|+ eta/2 ,

so that (4.3) and (2.6) imply

|
∑n

i=1 (p̃i − pi) | ≤ u
∑n

i=1 |p̃i|+ neta/2

< u
[
S̃n + ufp(S̃n)

]
+ neta/2

< 3u · ufp(S̃n) + neta/2 .

With (4.4) and n < u−1 this proves (4.2). Finally consider the following example showing that the factor

n+2 cannot be replaced by n+1. In a floating-point format with k bits in the mantissa, i.e. u = 2−k, define

xi :=


2−1(1 + 2u) for i = 1

2−i(1 + 2u) + u
2 for 2 ≤ i ≤ k

u
2 (1 + 2u) for k + 1 ≤ i ≤ n

(4.5)

and y1...n := 1− u. Note that xi, yi ∈ F. Applying Algorithm 4.2 yields

p̃1 = 2−1 , p̃i := 2−i +
u

2
for 2 ≤ i ≤ k and p̃i :=

u

2
for k + 1 ≤ i ≤ n .

Therefore

S̃n = s̃n =
k∑

i=1

2−i = 1− u and ufp(S̃n) =
1

2
.

But

xT y = (1− u)
∑n

i=1 xi

= (1− u)
[
(1− u)(1 + 2u) + (k − 1)u2 + (n− k)u2 (1 + 2u)

]
= (1− u)

[
1 + (n+ 1)u2 + (n− k − 2)u2

]
> 1 + (n− 1)u2 + (n− 2k − 5)u

2

2 ,

so that

xT y − s̃n > (n+ 1)u · 1
2
+ (n− 2k − 5)

u2

2
.

Therefore, in view of ufp(S̃n) =
1
2 , the factor n+2 in (4.2) cannot be replaced by n+1. In IEEE 754 double

precision (binary64) this is (at least) the case for vector lengths larger than 111. This completes the proof.

�

The example in the proof shows that for the largest admissible vector length n = u−1 − 2 it may happen

that

| s̃n − xT y | > ϕ ·
{
(n+ 2)u · ufp(S̃n) + realmin

}
with ϕ := 1− (2k + 8)u2 .

For IEEE 754 double precision (binary64), ϕ > 1− 10−29.

Finally we show how to compute in floating-point rounding to nearest an upper bound for the error of the

floating-point dot product. The proof is a little tricky because care is necessary for input near or in the

underflow range.

Corollary 4.4. Let x, y ∈ Fn with 2(n + 2)u ≤ 1 be given, denote by realmin := 1
2u

−1eta the smallest

positive normalized floating-point number, and let s̃n, S̃n and r := ufp(S̃n) be the quantities computed by

Algorithm 4.2. Define

R̃ := float
(
(n+ 2) · (u · r) + realmin

)
and R̂ := float

(
((n+ 2) · u) · r + realmin

)
,(4.6)

ERROR ESTIMATION OF FLOATING-POINT SUMMATION AND DOT PRODUCT 9

where float(·) means that all operations within the parenthesis are carried out in floating-point arithmetic

rounded to nearest in the specified order. Then

| s̃n − xT y| ≤ R̃ and | s̃n − xT y| ≤ R̂ .(4.7)

If only (n + 2)u ≤ 1 is satisfied, then (4.7) remains valid when replacing realmin in the computation of R̃

and R̂ by ϱ := 3
2realmin, respectively.

Remark 8. Note that fl(n+ 2) = n+ 2 and fl(32 · realmin) = ϱ. The assumption 2(n+ 2)u ≤ 1 implies in

IEEE 754 the practical limitation n < 4.5 · 1015.

Remark 9. The first quantity R̃ in (4.7) is advantageous for ufp(S̃n) near the underflow range; in the

underflow range u · ufp(S̃n) even becomes zero. When applying Corollary 4.4 to matrix multiplication,

however, ufp(S̃n) becomes a matrix and the second quantity R̂ is preferable because only one multiplication

of a scalar times a matrix is necessary.

Proof. We distinguish three cases, where in the first case ϱ can be omitted in the computation of R̃ and R̂

without jeopardizing the assertions, and in the second case ϱ := realmin can be used even for the weaker

assumption (n+ 2)u ≤ 1. Only in the third case we have to distinguish ϱ := realmin and ϱ := 3
2realmin.

First, assume S̃n ≥ u−1realmin, so that ufp(S̃n) ≥ u−1realmin. Then both products in the floating-point

computation of (n+ 2) · u · ufp(S̃n) do not cause a rounding error. Therefore

R̃ = R̂ ≥ (n+ 2)u · ufp(S̃n)

because fl(a+ b) ≥ a for any nonnegative a, b ∈ F. Hence, in view of (4.4), it suffices to prove

|
n∑

i=1

(p̃i − pi) | ≤ 3u · ufp(S̃n)(4.8)

under the assumption ufp(S̃n) ≥ u−1realmin. Denote by I ⊆ {1, . . . , n} the index set for which |p̃i| <
realmin. Then εη = 0 in (2.9) yields

|p̃i − pi| ≤

{
eta/2 for i ∈ I

u|p̃i| otherwise ,

so that

|
n∑

i=1

(p̃i − pi) | ≤ u
∑
i/∈I

|p̃i|+ keta/2 for k := |I| .(4.9)

Denote by S̃∗
n the result of Algorithm 3.2 when applied to the vector { |p̃i| : i /∈ I }, that is leaving out

the vector elements in the index set I. Recursively applying (3.9) implies 0 ≤ S̃∗
n ≤ S̃n because the order of

summation is not changed. Thus Theorem 3.5, (2.6) and nu < 1 give∑
i/∈I

|p̃i| ≤ S̃∗
n + (n− k − 1)u · ufp(S̃∗

n) <
(
2 + (n− k − 1)u

)
· ufp(S̃n) < (3− ku)ufp(S̃n) .

Hence (4.9) and ufp(S̃n) ≥ u−1realmin yield

|
n∑

i=1

(p̃i − pi) | ≤
(
3− ku

)
u · ufp(S̃n) + keta/2 ≤ 3u · ufp(S̃n)

and prove (4.8) as desired. This finishes the first case.

Second, assume S̃n < u−1eta. Then by (2.3), as already discussed, there is no rounding error at all

in the summations producing s̃n and S̃n. Then, because the result of the floating-point computation of

10 S. M. RUMP

(n+2)u ·ufp(S̃n) in any order is nonnegative, the total error |s̃n−xT y| is bounded by neta/2 < realmin ≤
min(R̃, R̂).

It remains the third case u−1eta ≤ S̃n < u−1realmin. Then there is no rounding error in the floating-point

computation of Φ := (n+2) ·u · ufp(S̃n), no matter of the order of the product. As the first subcase assume

(n+ 2)u ≤ 1 and ϱ := 3
2realmin. Then Φ = R̃ = R̂ ≤ ufp(S̃n) ≤ 1

2u
−1realmin and

ufp(Φ + ϱ) ≤ ufp
(1

2
u−1realmin+ ϱ

)
=

1

2
u−1realmin .

Now using (2.10) shows

R̃ = R̂ = fl(Φ + ϱ) ≥ Φ+ ϱ− u · ufp(Φ + ϱ) ≥ (n+ 2)u · ufp(S̃n) + realmin

and Theorem 4.3 applies. This leaves us with the second and last subcase 2(n+ 2)u ≤ 1 and ϱ := realmin.

Then Φ = R̃ = R̂ ≤ 1
2ufp(S̃n) ≤ 1

4u
−1realmin and

ufp(Φ + ϱ) ≤ ufp
(1

4
u−1realmin+ ϱ

)
=

1

4
u−1realmin .

Again using (2.10) and realmin = 1
2u

−1eta > neta shows

R̃ = R̂ = fl(Φ + ϱ) ≥ Φ+ ϱ− u · ufp(Φ + ϱ)

≥ (n+ 2)u · ufp(S̃n) +
3
4realmin

> (n+ 2)u · ufp(S̃n) +
1
2neta ,

and Theorem 4.3 applies again. The proof is finished. �

We note again that the way Corollary 4.4 handles the underflow uses the computational advantage that

a normalized number is added to the computed result ufp(S̃n): floating-point arithmetic in the underflow

range on today’s architectures is sometimes extremely slow.

We mention that much faster algorithms are possible if the entries of the input data do not differ too much in

absolute value. In this case Ogita and Oishi [8] propose to compute the rowwise and comlumnwise maximum

of the absolute value of the first and second factor, respectively, and bound the entries of the product by

their outer product. Then only the product of the midpoints is to be computed whereas eventually the

radius and all errors are estimated in O(n2).

5. Practical improvement over the classical Wilkinson-type bound. Following we first compare

the standard Wilkinson-type estimate (3.3) with the new computable bound (3.12) in Corollory 3.7. For

simplicity we compute (3.3) in floating-point ignoring rounding errors. The difference is marginal, though

this bound is not necessarily rigorous.

Care is necessary to generate suitable tests for summation. Picking pi from some random distribution, the

mean value for
∑

pi is easily computed and the ratio between the Wilkinson-type to the new bound (3.12)

can be predicted. For example, the mean deviation for uniformly distributed input data with mean zero and

standard deviation 1 is
√

2
π =: µ ≈ 0.7979, so that the expected value for

∑
|pi| is nµ. For n = 104 this

means
∑

|pi| ≈ 7979 and probably ufp(S̃n) = 4096, so that the ratio between (3.3) and (3.12) will probably

be almost 2.

To arrive at sufficiently random input data, we use vectors p=randn(1,K)*(rand(K)*randn(K,n)) in Matlab

notation2 for K = 1000. Such vectors should contain a certain randomness reflecting the behavior of floating-

point rounding - although (fortunately) such rounding is by no means random [11]. For 1000 tests each, the

2The Matlab function rand produces pseudo-random values drawn from a uniform distribution on the unit interval, whereas

randn produces pseudo-random values drawn from a normal distribution with mean zero and standard deviation one.

ERROR ESTIMATION OF FLOATING-POINT SUMMATION AND DOT PRODUCT 11

Table 5.1

Minimum, mean, median and maximum ratio between the estimates (3.3) with (3.12).

n minimum mean median maximum

10 1.0002 1.4338 1.3976 1.9982

100 1.0009 1.4767 1.4727 1.9960

1000 1.0007 1.4611 1.4201 1.9960

10,000 1.0004 1.3795 1.3086 1.9987

100,000 1.0033 1.4713 1.4508 1.9963

Table 5.2

Minimum, mean, median and maximum ratio between the estimates (4.1) with (4.6).

n minimum mean median maximum

50 0.9618 1.3967 1.3760 1.9212

100 0.9805 1.4133 1.3869 1.9606

200 0.9901 1.4574 1.4562 1.9801

500 0.9960 1.5630 1.5840 1.9920

1000 0.9980 1.5374 1.5893 1.9960

minimum, mean, median and maximum ratio between the estimates (3.3) with (3.12) is displayed in Table

5.1.

As expected, the ratio is between 1 and 2, so that the new estimate is up to a factor 2 better than the

traditional one. On the average, the old bound seems to exceed the new one by about 40%.

Comparing the standard Wilkinson-type estimate for dot products (4.1) with the new computable one (4.6)

in Corollary 4.4 we generate a matrix A with anticipated condition number 10k by specifying the singular

values geometrically decreasing from 1 to 10−k, and pre- and postmultiplying a randomly chosen orthogonal

matrix. This should generate a matrix with prescribed condition number and suitably random entries. We

compute an approximate inverse R of A in floating-point and estimate the error in the computation of RA.

The results are displayed in Table 5.2, where the Wilkinson-type bound (4.1) is computed in floating-point

ignoring rounding errors. We did not observe a significant difference for varying condition numbers, so it is

fixed to 1012. As can be seen we can expect an improvement by a factor 1.4, as previously for summation.

Due to the factor n+ 2 in (4.6) compared to γn ≈ n in (4.1) the new estimate for dot products may also be

worse than the traditional one. This might be fixed by taking the minimum.

The data suggests that the improvement of the presented estimates are limited to some 40% improvement

of certain error bounds. However, in addition to the appealing simplicity of the bounds there are situations

where the improvement changes failure into success. We finish the paper with two such examples, one for

dense and one for sparse matrices.

The non-singularity of a given matrix A ∈ Fn×n can be proved by computing an approximate inverse R (e.g.

by the Matlab-command R=inv(A)) and checking ∥I − RA∥ < 1 for some norm ∥ · ∥, where I denote the

identity matrix. Often the spectral norm is used and, because it is to time consuming to compute it directly,

it is estimated by ∥C∥2 ≤
√
∥C∥1∥C∥∞. This implies the sufficient criterion

C := |I −RA| and
√
∥C∥1∥C∥∞ < 1 ⇒ det(A) ̸= 0 .(5.1)

The application on a digital computer requires in particular an entrywise rigorous upper bound of |I −RA|,
and of its 1- and ∞-norm. The first problem is solved by Corollary 4.4, and the second by Corollary 3.7.

Alternatively, we may use the Wilkinson-type estimates (4.1) and (3.3). Extra care is necessary for both

12 S. M. RUMP

Fig. 5.1. Percentage that ∥I −RA∥ < 1 is satisfied using Wilkinson-type estimates (3.3), (4.1) depicted by (+), and new

estimates (4.6), (3.3) depicted by (o), dimension n = 100.

to cover rounding errors when evaluating the expressions, and the first one needs to be rewritten along the

lines of (3.2) and (3.3) so that the approximation float(|x|T |y|) ∈ F can be used rather than the exact value

|x|T |y| ∈ R.

The two approaches are tested using the Matlab routine randsvd to generate randommatrices with prescribed

condition number via the singular value decomposition: For an anticipated condition number κ, a vector v

of length n of logarithmically equidistantly distributed numbers between 1 and 1/κ is generated, and the

diagonal matrix with v on the diagonal is multiplied from the left and right by a random orthogonal matrix.

The order of the elements is not far from 1 in absolute value, so that we can safely ignore underflow for the

Wilkinson-type estimates.

For condition number 10k we can expect about k correct digits in the approximate inverse R, and the norm

of the residual ∥I − RA∥ can be expected to be of the order n3/2c · u. Thus for condition numbers roughly

up to u−1/n3/2 the proof of non-singularity should be successful.

In Figure 5.1 the results for dimension n = 100 are displayed, where “+” is used for the Wilkinson-type

bounds and “o” for the new bounds. In IEEE 754 double precision the method should be successful up

to condition number 1013. For each condition number we used 100 test cases. The solid line depicts the

percentage of success, i.e. the input matrix was proved to be non-singular, and the dotted line depicts the

median of the upper bounds of
√

∥C∥1∥C∥∞.

As can be seen for a condition number around 3 · 1013 the behavior of the methods changes from success to

failure. The interesting detailed data in that area is displayed in Table 5.3.

In Figure 5.2 similar results for dimension n = 1000 are displayed. In IEEE 754 double precision the method

should be successful up to condition number 3 ·1011. The detailed data is shown in Table 5.4. For condition

number 6.3 · 1011, for example, the new estimate was successful in all cases, whereas the Wilkinson-type

bound was successful in 7% of the 100 test cases.

The second example concerns the proof of positive definiteness. Let a symmetric matrix A be given, and

assume that the floating-point Cholesky decomposition runs to completion producing some matrix G. Al-

ERROR ESTIMATION OF FLOATING-POINT SUMMATION AND DOT PRODUCT 13

Table 5.3

Wilkinson-type versus new estimates as in Figure 5.1: detailed results, dimension n = 100.

median(norm bound) percentage of success

cond(A) Wilkinson (3.3), (4.1) new (4.6), (3.3) Wilkinson (3.3), (4.1) new (4.6), (3.3)

2.0 · 1013 0.69 0.49 99 100

2.5 · 1013 0.80 0.60 77 100

3.2 · 1013 0.87 0.72 44 94

4.0 · 1013 0.94 0.84 8 62

Fig. 5.2. Percentage that ∥I −RA∥ < 1 is satisfied using Wilkinson-type estimates (3.3), (4.1) depicted by (+), and new

estimates (4.6), (3.3) depicted by (o), dimension n = 1000.

though it is well-known that the Cholesky decomposition is a numerically very stable algorithm, and moreover

explicit bounds for the residual ∥A−GTG∥2 only depending on the diagonal of A are known [1], more care

is necessary to prove A to be positive definite.

Given AT = A ∈ Fn×n, a simple way is to pick some 0 < α ∈ R, and to compute an approximate Cholesky

decomposition G of A− αI. If ∥A− αI −GTG∥2 < α, then

λmin(A) = λmin(A− αI) + α > λmin(A− αI) + ∥A− αI −GTG∥2 ≥ λmin(G
TG) ≥ 0(5.2)

using Wilkinson’s perturbation bound for eigenvalues of symmetric matrices, so that A is proved to be

symmetric positive definite.

We take a discrete Laplacian operator on a two-dimensional n×n grid resulting in an n2×n2 sparse matrix.

Although at most 5 entries per row in A are nonzero, the Cholesky factor is a banded matrix of bandwidth

n. Based on an approximation of the smallest singular value of A, a bisection scheme is used to determine

some α with ∥A− αI −GTG∥2 < α.

Table 5.5 shows the computational results in IEEE 754 single precision. This is only an example to show the

difference between the traditional and new estimates; for solving a linear system with the Poisson matrix,

of course, much better methods are available. Treating larger sparse matrices in single precision becomes

popular due to memory restrictions. In the application of the traditional and new bounds we used the fact

14 S. M. RUMP

Table 5.4

Wilkinson-type versus new estimates as in Figure 5.2: detailed results, dimension n = 1000.

median(norm bound) percentage of success

cond(A) Wilkinson (3.3), (4.1) new (4.6), (3.3) Wilkinson (3.3), (4.1) new (4.6), (3.3)

5.0 · 1011 0.93 0.71 63 100

6.3 · 1011 0.98 0.94 7 100

7.9 · 1011 — 0.96 0 72

Table 5.5

Wilkinson-type [(3.3), (4.1)] versus new [(4.6), (3.3)] estimates to prove positive definiteness of the discrete Laplacian

operator in IEEE 754 single precision.

upper bound of ∥A− αI −GTG∥2 proof of positive definiteness

n dim(A) α Wilkinson new Wilkinson new

230 52900 2.96 · 10−4 2.92 · 10−4 2.09 · 10−4 X X
240 57600 2.72 · 10−4 3.04 · 10−4 2.18 · 10−4 - X
250 62500 3.09 · 10−4 3.43 · 10−4 2.46 · 10−4 - X
260 67600 2.86 · 10−4 3.55 · 10−4 2.55 · 10−4 - X
270 72900 2.65 · 10−4 3.68 · 10−4 2.64 · 10−4 - X

that each dot product in A− αI −GTG consists of at most n nonzero elements.

As can be seen, the verification of positive definiteness succeeds with the traditional Wilkinson-type bounds

up to matrix dimension 52900, whereas with the new bounds up to matrix dimension 72900. We mention

that a computation using directed rounding, which is mandatory in the IEEE 754 standard [4, 5], yields

significantly better results. The change of the rounding mode, however, is on some architectures involved

and makes computational code less portable.

6. Conclusion. New bounds are derived for the floating-point approximation of a sum and dot product.

They are nice by omitting higher order terms, and close to what would expect (or desire). Moreover they

are easy to compute in floating-point rounding to nearest and improve the classical Wilkinson-type bounds

by up to a factor of 2. However, the new bounds are to be computed in the same order as the summation

or dot product, whereas the classical bounds allow any order of computation.

As is well-known the worst case is very rare, so that both types of bounds usually grossly overestimate

the true error. Nevertheless, given the available information, the new bounds are optimal, they fill some

theoretical gap, they demonstrate the power of the ufp-concept, and they do not require directed rounding.

Despite the theoretical merit, the bounds may be useful in applications were rigorous bounds are mandatory

and directed rounding is not available, for example in computer-assisted proofs or interval libraries for scalar,

vector and matrix operations.

Acknowledgement. My thanks to Florian Bünger, Stef Graillat, Claude-Pierre Jeannerod and Takeshi

Ogita for helpful comments. Moreover I am grateful to the remarks of the two anonymous referees.

REFERENCES

[1] J.B. Demmel. On floating point errors in Cholesky. LAPACK Working Note 14 CS-89-87, Department of Computer

Science, University of Tennessee, Knoxville, TN, USA, 1989.

[2] J.R. Hauser. Handling floating-point exceptions in numeric programs. ACM Trans. Program. Lang. Syst., 18(2):139–174,

1996.

[3] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM Publications, Philadelphia, 2nd edition, 2002.

ERROR ESTIMATION OF FLOATING-POINT SUMMATION AND DOT PRODUCT 15

[4] ANSI/IEEE 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. New York, 1985.

[5] ANSI/IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic. New York, 2008.

[6] C. Jacobi, H.J. Oh, K.D. Tran, S.R. Cottier, B.W. Michael, H. Nishikawa, Y. Totsuka, T. Namatame, and N. Yano. The

vector floating-point unit in a synergistic processor element of a cell processor. In ARITH 2005: Proceedings of the

17th IEEE Symposium on Computer Arithmetic, pages 59–67, Washington, 2005.

[7] J.M. Muller, N. Brisebarre, F. de Dinechin, C.P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres.

Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[8] T. Ogita and S. Oishi. Fast Inclution of Interval Matrix Multiplication. Reliable Computing, 11:191–205, 2005.

[9] S.M. Rump. Ultimately Fast Accurate Summation. SIAM Journal on Scietific Computing (SISC), 31(5):3466–3502, 2009.

[10] S.M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful rounding. SIAM J. Sci. Comput.,

31(1):189–224, 2008.

[11] L.N. Trefethen and R. Schreiber. Average-case stability of gaussian elimination. SIAM J. Matrix Anal. Appl., 11(3):335–

360, 1990.

